【题目】用适当方法解下列方程
(1)x2﹣9=0;
(2)x2+4x﹣3=0
(3)(x﹣2)2=3(x﹣2)
(4)(x+3)2=(2x﹣1)2
【答案】(1)x1=﹣3,x2=3;(2)x1=2+,x2=2﹣;(3)x1=2,x2=5;(4)x1=﹣,x2=4.
【解析】
(1)利用平方差公式对方程左边的式子因式分解,解方程即可;(2)移项,利用配方法解方程即可;(3)移项,对方程左边的式子提取公因式,解方程即可;(4)移项,利用平方差公式对方程左边的式子因式分解,解方程即可.
(1)x2﹣9=0,
(x+3)(x﹣3)=0,
x+3=0或x﹣3=0,
∴x1=﹣3,x2=3;
(2)x2+4x﹣3=0,
x2+4x=3,
x2+4x+4=3+4,
(x﹣2)2=7,
x﹣2=±,
∴x1=2+,x2=2﹣;
(3)(x﹣2)2=3(x﹣2),
(x﹣2)2﹣3(x﹣2)=0,
(x﹣2)(x﹣2﹣3)=0,
x﹣2=0或x﹣5=0,
∴x1=2,x2=5;
(4)(x+3)2=(2x﹣1)2
(x+3)2﹣(2x﹣1)2=0,
(x+3+2x﹣1)(x+3﹣2x+1)=0,
3x+2=0或﹣x+4=0,
∴x1=﹣,x2=4.
科目:初中数学 来源: 题型:
【题目】已知y是x 的函数,自变量x的取值范围是x >0,下表是y与x 的几组对应值.
x | ··· | 1 | 2 | 3 | 5 | 7 | 9 | ··· |
y | ··· | 1.98 | 3.95 | 2.63 | 1.58 | 1.13 | 0.88 | ··· |
小腾根据学习一次函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.
下面是小腾的探究过程,请补充完整:
(1)如图,在平面直角坐标系中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;
(2)根据画出的函数图象,写出:
①x=4对应的函数值y约为________;
②该函数的一条性质:__________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校计划从商店购进两种商品,购买一个商品比购买一个商品多花10元,并且花费300元购买商品和花费100元购买商品的数量相等.
(1)求购买一个商品和一个商品各需要多少元;
(2)根据学校实际情况,该学校需要购买种商品的个数是购买种商品个数的3倍,还多11个,经与商店洽谈,商店决定在该学校购买种商品时给予八折优惠,如果该学校本次购买两种商品的总费用不超过1000元,那么该学校最多可购买多少个种商品?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线与轴、轴分别交于点、点,以线段为直角边在第一象限内作等腰直角三角形,,点为坐标系中的一个动点.
(1)请直接写出直线的表达式;
(2)求出的面积;
(3)当与面积相等时,求实数的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A、C的坐标分别为A(﹣3,0),C(1,0),.
(1)求过点A、B的直线的函数表达式;
(2)在x轴上找一点D,连接DB,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;
(3)在(2)的条件下,如P、Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,问是否存在这样的m使得以点A、P、Q为顶点的三角形与△ADB相似?如存在,请求出m的值;如不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在长方形中,,,点从点出发,以的速度沿向点运动,设点的运动时间为秒,且.
(1)_________(用含的代数式表示).
(2)如图,当点从点开始运动的同时,点从点出发,以的速度沿向点运动,是否存在这样的值,使得以、、为顶点的三角形与以、、为顶点的三角形全等?若存在,请求出v的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将△ABC绕点B逆时针旋转α得到△DBE,DE的延长线与AC相交于点F,连接DA、BF,∠ABC=α=60°,BF=AF.
(1)求证:DA∥BC;
(2)猜想线段DF、AF的数量关系,并证明你的猜想.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图:直线y=x与反比例函数y=(k>0)的图象在第一象限内交于点A(2,m).
(1)求m、k的值;
(2)点B在y轴负半轴上,若△AOB的面积为2,求AB所在直线的函数表达式;
(3)将△AOB沿直线AB向上平移,平移后A、O、B的对应点分别为A'、O'、B',当点O'恰好落在反比例函数y=的图象上时,求点A'的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com