【题目】如图:直线y=x与反比例函数y=(k>0)的图象在第一象限内交于点A(2,m).
(1)求m、k的值;
(2)点B在y轴负半轴上,若△AOB的面积为2,求AB所在直线的函数表达式;
(3)将△AOB沿直线AB向上平移,平移后A、O、B的对应点分别为A'、O'、B',当点O'恰好落在反比例函数y=的图象上时,求点A'的坐标.
【答案】(1)m=2;k=4;(2)y=2x-2;(3)(4,4)
【解析】
(1)先求点A的坐标,根据反比例函数图象上点的特征再求k值即可;(2)根据△AOB的面积为2,求得点B的坐标,再利用待定系数法求直AB线的函数表达式即可;(3)将△AOB沿直线AB向上平移,平移后A、O、B的对应点分别为A'、O'、B',当点O'恰好落在反比例函数y=的图象上时,设点O'坐标为(a,),则点B'的坐标为(a,2a-2),由平移的性质可得OB= O'B'=2,所以-(2a-2)=2,解得a=2(舍负),即可得点O'的坐标为(2,2),已知A(2,2),根据点的坐标的平移规律可得点A'的坐标(2+2,2+2),即点A'的坐标(4,4).
(1)∵直线y=x经过A(2,m),
∴m=2,
∴A(2,2),
∵A在y=的图象上,
∴k=4.
(2)设B(0,n),
由题意:×(﹣n)×2=2,
∴n=﹣2,
∴B(0,﹣2),设直线AB的解析式为y=k′x+b,
则有,
∴,
∴直线AB的解析式为y=2x-2.
(3)当点O'恰好落在反比例函数y=的图象上时,点A'的坐标(4,4).
科目:初中数学 来源: 题型:
【题目】《九章算术》是中国传统数学重要的著作之一,奠定了中国传统数学的基本框架.其中第九卷《勾股》主要讲述了以测量问题为中心的直角 三角形三边互求,之中记载了一道有趣的“折竹抵地”问题:
“今有竹高一丈,末折抵地,去本四尺,问折者高几何?”
译文:“一根竹子,原高一丈,一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部4尺远,则折断后的竹子高度为多少尺?”(备注:1丈=10尺)
如果设竹梢到折断处的长度为尺,那么折断处到竹子的根部用含的代数式可表示为__________尺,根据题意,可列方程为_______________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(5,3),B(6,5),C(4,6).
(1)画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标.
(2)将△A1B1C1向左平移6个单位,再向上平移5个单位,画出平移后得到的△A2B2C2,并写出点B2的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如下图所示,直线y=-x+3与坐标轴分别交于点A,B,与直线y=x交于点C,线段OA上的点Q以每秒1个单位的速度从点O出发向点A作匀速运动,运动时间为t秒,连结CQ.
(1)求出点C的坐标;
(2)若△OQC是等腰直角三角形,则t的值为________;
(3)若CQ平分△OAC的面积,求直线CQ对应的函数表达式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某水果批发商场销售一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下.若每千克涨价1元,日销售量将减少20千克.
(1)现该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?
(2)每千克水果涨价多少元时,商场每天获得的利润最大?获得的最大利润是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某次列车现阶段的平均速度是千米/小时,未来还将提速,在相同的时间内,列车现阶段行驶千米,提速后列车比现阶段多行驶千米.
(1)求列车平均提速多少千米/小时?
(2)若提速后列车的平均速度是千米/小时,则题中的为多少千米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,A(a,0)、B(0,b)、D(﹣d,d),连BD交x轴于E.
(1)如图1,若a、b、d满足(a﹣4)2+(a﹣b)2+=0,求△ADE的面积.
(2)如图2,在(1)的条件下,点P在x轴上A点右侧,连BP过点P作PQ⊥PB交直线AD于Q,求证:PQ=PB.
(3)如图3,设AB=c,且d=﹣2.当BD平分∠ABO时,试求a﹣b+c的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com