【题目】综合与实践:
如图1,将一个等腰直角三角尺的顶点放置在直线上,,,过点作于点,过点作于点.
观察发现:
(1)如图1.当,两点均在直线的上方时,
①猜测线段,与的数量关系,并说明理由;
②直接写出线段,与的数量关系;
操作证明:
(2)将等腰直角三角尺绕着点逆时针旋转至图2位置时,线段,与又有怎样的数量关系,请写出你的猜想,并写出证明过程;
拓广探索:
(3)将等腰直角三用尺绕着点继续旋转至图3位置时,与交于点,若,,请直接写出的长度.
【答案】(1)①. 理由见解析;②;(2);证明见解析;(3)的长度为.
【解析】
(1)过点作根据已知条件结合直角三角形性质证明,从而得到四边形为正方形,最后得出①,直接写出②(2)过点作,先证明证明四边形为正方形,根据正方形的性质求解(3)过点作,证明,四边形为正方形,再求解.
解:(1)①.
理由如下:
如图,过点作,交的延长线于点,
∵,,
∴.
又∵
∴
∴四边形为矩形.
∴.
又∵,
∴.
即.
在和中,
∴.
∴,.
又∵四边形为矩形,
∴四边形为正方形.
∴.
∴.
②.
(2)
如图,过点作,交延长线于点,
∵,,
∴.
又∵,
∴.
∴四边形为矩形.
∴.
又∵,
∴,
即.
在和中,
∴.
∴,.
又∵四边形为矩形,
∴四边形为正方形.
∴.
∵,
∴.
∴.
(3)
如图,过点作,交于点,
同理可证,,四边形为正方形.
∴,.
∵,
∴.
∴.
∵,,
∴,.
∵,
∴.
∴.
∴.
科目:初中数学 来源: 题型:
【题目】某校初一年级68名师生参加社会实践活动,计划租车前往,租车收费标准如下:
车型 | 大巴车 (最多可坐55人) | 中巴车 (最多可坐39人) | 小巴车 (最多可坐26人) |
每车租金 (元∕天) | 900 | 800 | 550 |
则租车一天的最低费用为____元.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形中,对角线、交于点,已知,.
(1)求的长;
(2)点为直线上的一个动点,连接,将线段绕点顺时针旋转的角度后得到对应的线段(即),交于点.
①当为的中点时,求的长;
②连接、,当的长度最小时,求的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在数学课堂上,小斐同学和小可同学分别拿着一大一小两个等腰直角三角板,可分别记做和,其中.
问题的产生:
两位同学先按照如图摆放,点在上,发现和在数量和位置关系上分别满足,.
问题的探究:
(1)将绕点逆时针旋转一定角度.如图.点在内部,点在外部,连结,上述结论依然成立吗?如果成立,请证明;如果不成立,请说明理由.
问题的延伸:
继续将绕点逆时针旋转.如图.点都在外部,连结,,与相交于点.
(2)若,求四边形的面积;
(3)若,,设,,求与之间的函数关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,点是的中点,点是线段的延长线上的一动点,连接,过点作的平行线,与线段的延长线交于点,连接、.
求证:四边形是平行四边形.
若,,则在点的运动过程中:
①当________时,四边形是矩形,试说明理由;
②当________时,四边形是菱形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】综合与实践:
如图1,将一个等腰直角三角尺的顶点放置在直线上,,,过点作于点,过点作于点.
观察发现:
(1)如图1.当,两点均在直线的上方时,
①猜测线段,与的数量关系,并说明理由;
②直接写出线段,与的数量关系;
操作证明:
(2)将等腰直角三角尺绕着点逆时针旋转至图2位置时,线段,与又有怎样的数量关系,请写出你的猜想,并写出证明过程;
拓广探索:
(3)将等腰直角三用尺绕着点继续旋转至图3位置时,与交于点,若,,请直接写出的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,为测量学校旗杆AB的高度,小明从旗杆正前方6米处的点C出发,沿坡度为i=1:的斜坡CD前进2米到达点D,在点D处放置测角仪DE,测得旗杆顶部A的仰角为30°,量得测角仪DE的高为1.5米.A、B、C、D、E在同一平面内,且旗杆和测角仪都与地面垂直.
(1)求点D的铅垂高度(结果保留根号);
(2)求旗杆AB的高度(结果保留根号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校团委举办了一次“中国梦,我的梦”演讲比赛,满分10分,学生得分均为整数,成绩达到6分及以上为合格,达到9分及以上为优秀.这次竞赛中甲、乙两组学生成绩分布的条形统计图如下.
(1)补充完成下列的成绩统计分析表:
(2)小明同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上表可知,小明是 组学生;(填“甲”或“乙”)
(3)如果学校准备推荐其中一个组参加区级比赛,你推荐____参加,请你从两个不同的角度说明推荐理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com