【题目】某校团委举办了一次“中国梦,我的梦”演讲比赛,满分10分,学生得分均为整数,成绩达到6分及以上为合格,达到9分及以上为优秀.这次竞赛中甲、乙两组学生成绩分布的条形统计图如下.
(1)补充完成下列的成绩统计分析表:
(2)小明同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上表可知,小明是 组学生;(填“甲”或“乙”)
(3)如果学校准备推荐其中一个组参加区级比赛,你推荐____参加,请你从两个不同的角度说明推荐理由.
【答案】(1)见表格;(2)甲;(3)甲或乙.
【解析】
(1)先根据条形统计图写出甲乙两组的成绩,然后分别计算甲的中位数,乙的平均数和方差;
(2)比较两组的中位数进行判断;
(3)通过甲组的合格率,优秀率或乙组的平均数、中位数或方差进行说明.
(1)甲组:3,6,6,6,6,6,7,8,9,10,中位数为6;
乙组:5,5,6,7,7,8,8,8,8,9,平均数=7.1,S乙2=1.69;
填表如下:
组别 | 平均分 | 中位数 | 方差 | 合格率 | 优秀率 |
甲 | 6.7 | 6 | 3.41 | 90% | 20% |
乙 | 7.1 | 7.5 | 1.69 | 80% | 10% |
(2)(2)因为甲组的中位数为6,所以7分在甲组排名属中游略偏上;
(3)甲或乙
甲组:甲组的合格率、优秀率均高于乙组.
(乙组的平均分、中位数均高于甲组,且乙组的成绩比甲组的成绩稳定.)
科目:初中数学 来源: 题型:
【题目】综合与实践:
如图1,将一个等腰直角三角尺的顶点
放置在直线
上,
,
,过点
作
于点
,过点
作
于点
.
观察发现:
(1)如图1.当,
两点均在直线
的上方时,
①猜测线段,
与
的数量关系,并说明理由;
②直接写出线段,
与
的数量关系;
操作证明:
(2)将等腰直角三角尺绕着点
逆时针旋转至图2位置时,线段
,
与
又有怎样的数量关系,请写出你的猜想,并写出证明过程;
拓广探索:
(3)将等腰直角三用尺绕着点
继续旋转至图3位置时,
与
交于点
,若
,
,请直接写出
的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在等腰Rt△ABC中,∠ACB=90°,AC=BC,点D是边BC上任意一点,连接AD,过点C作CE⊥AD于点E.
(1)如图1,若∠BAD=15°,且CE=1,求线段BD的长;
(2)如图2,过点C作CF⊥CE,且CF=CE,连接FE并延长交AB于点M,连接BF,求证:AM=BM.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】嘉淇正在参加全国“数学竞赛”,只要他再答对最后两道单选题就能顺利过关,其中第一道题有3个选项,第二道题有4个选项,而这两道题嘉淇都不会,不过嘉淇还有一次“求助”没有使用(使用“求助”可让主持人去掉其中一题的一个错误选项).
(1)如果嘉淇第一题不使用“求助”,随机选择一个选项,那么嘉淇答对第一道题的概率是多少?
(2)若嘉淇将“求助”留在第二题使用,请用画树状图或列表法求嘉淇能顺利过关的概率;
(3)请你从概率的角度分析,建议嘉洪在第几题使用“求助”,才能使他过关的概率较大.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平行四边形纸片ABCD,CD=5,BC=2,∠A=60°,将纸片折叠,使点A落在射线AD上(记为点A′),折痕与AB交于点P,设AP的长为x,折叠后纸片重叠部分的面积为y,可以表示y与x之间关系的大致图象是( )
A. B.
C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】今年我市为创评“全国文明城市”称号,周末团市委组织志愿者进行宣传活动.班主任崔老师决定从4名女班干部(小悦、小惠、小艳和小倩)中通过抽签方式确定2名女生去参加.抽签规则:将4名女班干部姓名分别写在4张完全相同的卡片正面,把四张卡片背面朝上,洗匀后放在桌面上,崔老师先从中随机抽取一张卡片,记下姓名,再从剩余的3张卡片中随机抽取第二张,记下姓名.[规定:小悦、小惠、小艳和小倩的姓名分别记作:A、B、C、D]
(1)“小悦被抽中”是 事件(填“不可能”或“必然”或“随机”);第一次抽取卡片“小悦被抽中”的概率为 ;
(2)试用画树状图或列表的方法求出“小惠被抽中”的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AB=8厘米,AC=16厘米,点P从A出发,以每秒2厘米的速度向B运动,点Q从C同时出发,以每秒3厘米的速度向A运动,其中一个动点到端点时,另一个动点也相应停止运动,设运动的时间为t.
⑴用含t的代数式表示:AP= ,AQ= .
⑵当以A,P,Q为顶点的三角形与△ABC相似时,求运动时间是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线L:y=﹣x+2与x轴、y轴分别交于A、B两点,在y轴上有一点N(0,4),动点M从A点以每秒1个单位的速度匀速沿x轴向左移动.
(1)点A的坐标:_____;点B的坐标:_____;
(2)求△NOM的面积S与M的移动时间t之间的函数关系式;
(3)在y轴右边,当t为何值时,△NOM≌△AOB,求出此时点M的坐标;
(4)在(3)的条件下,若点G是线段ON上一点,连结MG,△MGN沿MG折叠,点N恰好落在x轴上的点H处,求点G的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=x2+bx+c经过△ABC的三个顶点,其中点A(0,1),点B(﹣9,10),AC∥x轴,点P时直线AC下方抛物线上的动点.
(1)求抛物线的解析式;(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;
(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com