【题目】一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发, 到达目的地后停止,设慢车行驶时间为 x 小时,两车之间的距离为 y 千米,两者的关系如图 所示:
(1)两车出发 小时后相遇;
(2)求快车和慢车的速度;
(3)求线段 BC 所表示的 y 与 x 的 关系式,并求两车相距 300 千米时的时间.
【答案】(1)4.8;(2)150,100;(3)y=250x-1200(4.8≤x≤8),3.6或6
【解析】
(1)根据图象可知两车出发4.8小时相遇;
(2)根据图象和题意可以分别求出慢车和快车的速度;
(3)根据题意可以求得点C的坐标,由图象可以得到点B的坐标,从而可以得到线段BC所表示的y与x之间的函数关系式,再把y=300代入求出对应的y值即可得出两车行驶6小时两车相距多少千米.
解:(1)由图知:两车出发4.8小时相遇;
故答案为:4.8
(2)快车8小时到达,慢车12小时到达,
故:快车速度为1200÷8=150(千米/时),
慢车速度为1200÷12=100(千米/时);
(3)由题可得,点C是快车刚到达乙地,
∵点C的横坐标是8,
∴纵坐标是:100×8=800,
即点C的坐标为(8,800).
设线段BC对应的函数解析式为y=kx+b,
∵点B(4.8,0),点C(8,800),
解得:
∴线段BC所表示的y与x的函数关系式是y=250x-1200(4.8≤x≤8).
当y=300时,300=250x-1200,解得x=6.
设线段AB对应的函数解析式为y1=k1x+b1,
点B(4.8,0),点A(0,1200)
解得:
线段AB所表示的y与x的函数关系式是y1=-250x+1200(0≤x≤4.8);
当y=300时,300=-250x+1200,解得x=3.6.
即两车相距300千米时的时间为3.6或6时.
科目:初中数学 来源: 题型:
【题目】广州火车南站广场计划在广场内种植A,B两种花木共 6600棵,若A花木数量是B花木数量的2倍少600棵.
(1)A,B两种花木的数量分别是多少棵?
(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A花木60棵或B花木40棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线与坐标轴交于A,B两点,在射线AO上有一点P,当△APB是以AP为腰的等腰三角形时,点P的坐标是________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解,并规定:F(n)=,例如12可以分解成1×12,2×6或3×4,因为12-1>6-2>4-3,所有3×4是最佳分解,所以F(12)=.
(1)如果一个正整数a是另外一个正整数b的平方,我们称正整数a是完全平方数,求证:对任意一个完全平方数m,总有F(m)=1.
(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为18,那么我们称这个数t为“吉祥数”,求所有“吉祥数”中F(t)的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,E在AC上,经过A,B,E三点的圆O交BC于点D,且D点是弧BE的中点,
(1)求证AB是圆的直径;
(2)若AB=8,∠C=60°,求阴影部分的面积;
(3)当∠A为锐角时,试说明∠A与∠CBE的关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为⊙O的直径,△ABC的边AC,BC分别与⊙O交于D,E,若E为的中点.
(1)求证:DE=EC;
(2)若DC=2,BC=6,求⊙O的半径
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知正方形 ABCD 的边长为 5,点 E、F 分别在 AD、DC 上,AE=DF=2,BE 与 AF 相交于点 G,点 H 为 BF 的中点,连接 GH,求 GH 的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com