精英家教网 > 初中数学 > 题目详情

【题目】如图AB是△ABC的外接圆⊙O的直径,过点C作⊙O的切线CM,延长BC到点D,使CD=BC,连接AD交CM于点E,若⊙OD半径为3,AE=5,

(1)求证:CM⊥AD;

(2)求线段CE的长.

【答案】(1)见解析;(2)

【解析】(1)连接OC,根据切线的性质和圆周角定理证得AC垂直平分BD,然后根据平行线的判定与性质证得结论;

(2)根据相似三角形的判定与性质证明求解即可.

证明:(1)连接OC

∵CM切⊙O于点C,

∴∠OCE=90°,

∵AB是⊙O的直径,

∴∠ACB=90°,

∵CD=BC,

∴AC垂直平分BD,

∴AB=AD,

∴∠B=∠D

∵∠B=∠OCB

∴∠D=∠OCB

∴OC∥AD

∴∠CED=∠OCE=90°

∴CM⊥AD.

(2)∵OA=OB,BC=CD

∴OC=AD

∴AD=6

∴DE=AD-AE=1

易证△CDE~△ACE

∴CE2=AE×DE

∴CE=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】阅读下列材料并填空:

1)探究:平面上有个点()且任意3个点不在同一条直线上,经过每两点画一条直线,一共能画多少条直线?

我们知道,两点确定一条直线.平面上有2个点时,可以画条直线,平面内有3个点时,一共可以画条直线,平面上有4个点时,一共可以画条直线,平面内有5个点时,一共可以画________条直线,…平面内有个点时,一共可以画________条直线.

2)运用:某足球比赛中有22个球队进行单循环比赛(每两队之间必须比赛一场),一共要进行多少场比赛?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】衡阳市城市标志来雁塔坐落在衡阳市雁峰公园内.如图为了测量来雁塔的高度E处用高为1.5 m的测角仪AE测得塔顶C的仰角为30°,再向塔身前进10.4 m,又测得塔顶C的仰角为60°,求来雁塔的高度.(结果精确到0.1 m)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)化简:(+1÷,并从﹣1012这四个数中选取一个合适的数作为x的值代入求值.

2)解方程: +2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在四边形中ABCD中,AB⊥BC,AD∥BC,∠BCD=120°,BC=2,AD=DC.P为四边形ABCD边上的任意一点,当∠BPC=30°时,CP的长为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,延长BA到点F,使得AFAB,连接FCADE

1)求证:ADFC互相平分;

2)当CF平分∠BCD时,BCCD的数量关系是   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点A(a,b)为第一象限内一点,且a<b.连结OA,并以点A为旋转中心把OA逆时针转90°后得线段BA.若点A、B恰好都在同一反比例函数的图象上,则的值等于___

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将若干枚棋子平均分成三堆(每堆至少2枚),分别放在左边、中间、右边,并按如下顺序进行操作:

第1次:从右边堆中拿出 2枚棋子放入中间一堆;

第2次:从左边一堆中拿出1枚棋子放入中间一堆;

第3次:从中间一堆中拿出几枚棋子放入右边一堆,并使右边一堆的棋子数为最初的2倍.

(1)操作结束后,若右边堆比左边一堆多15枚棋子,问共有_____枚棋子;

(2)通过计算得出:无论最初的棋子数为多少,按上述方法完成操作后,中间一堆总是剩下_____枚棋子.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,在平面直角坐标系中,矩形OABC的边OAOC分别在x轴的正半轴、y轴的正半轴上,且OAOC)的长是方程的两个根.

1)如图,求点A的坐标;

2)如图,将矩形OABC沿某条直线折叠,使点A与点C重合,折痕交CB于点D,交OA于点E.求直线DE的解析式;

3)在(2)的条件下,点P在直线DE上,在直线AC上是否存在点Q,使以点ABPQ为顶点的四边形是平行四边形.若存在,请求出点Q坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案