精英家教网 > 初中数学 > 题目详情

如图,以点P(﹣1,0)为圆心的圆,交x轴于B、C两点(B在C的左侧),交y轴于A、D两点(A在D的下方),AD=2,将△ABC绕点P旋转180°,得到△MCB.

(1)求B、C两点的坐标;

(2)请在图中画出线段MB、MC,并判断四边形ACMB的形状(不必证明),求出点M的坐标;

(3)动直线l从与BM重合的位置开始绕点B顺时针旋转,到与BC重合时停止,设直线l与CM交点为E,点Q为BE的中点,过点E作EG⊥BC于G,连接MQ、QG.请问在旋转过程中∠MQG的大小是否变化?若不变,求出∠MQG的度数;若变化,请说明理由.

 


       解:(1)连接PA,如图1所示.

∵PO⊥AD,

∴AO=DO.

∵AD=2

∴OA=

∵点P坐标为(﹣1,0),

∴OP=1.

∴PA==2.

∴BP=CP=2.

∴B(﹣3,0),C(1,0).

(2)连接AP,延长AP交⊙P于点M,连接MB、MC.

如图2所示,线段MB、MC即为所求作.

四边形ACMB是矩形.

理由如下:

∵△MCB由△ABC绕点P旋转180°所得,

∴四边形ACMB是平行四边形.

∵BC是⊙P的直径,

∴∠CAB=90°.

∴平行四边形ACMB是矩形.

过点M作MH⊥BC,垂足为H,如图2所示.

在△MHP和△AOP中,

∵∠MHP=∠AOP,∠HPM=∠OPA,MP=AP,

∴△MHP≌△AOP.

∴MH=OA=,PH=PO=1.

∴OH=2.

∴点M的坐标为(﹣2,).

(3)在旋转过程中∠MQG的大小不变.

∵四边形ACMB是矩形,

∴∠BMC=90°.

∵EG⊥BO,

∴∠BGE=90°.

∴∠BMC=∠BGE=90°.

∵点Q是BE的中点,

∴QM=QE=QB=QG.

∴点E、M、B、G在以点Q为圆心,QB为半径的圆上,如图3所示.

∴∠MQG=2∠MBG.

∵∠COA=90°,OC=1,OA=

∴tan∠OCA==

∴∠OCA=60°.

∴∠MBC=∠BCA=60°.

∴∠MQG=120°.

∴在旋转过程中∠MQG的大小不变,始终等于120°.

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:


如图,AB为⊙O的弦,⊙O的半径为5,OC⊥AB于点D,交⊙O于点C,且CD=1,则弦AB的长是.

 

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于A、D两点,与y轴交于点B,四边形OBCD是矩形,点A的坐标为(1,0),点B的坐标为(0,4),已知点E(m,0)是线段DO上的动点,过点E作PE⊥x轴交抛物线于点P,交BC于点G,交BD于点H.

(1)求该抛物线的解析式;

(2)当点P在直线BC上方时,请用含m的代数式表示PG的长度;

(3)在(2)的条件下,是否存在这样的点P,使得以P、B、G为顶点的三角形与△DEH相似?若存在,求出此时m的值;若不存在,请说明理由.

 

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,⊙O的半径是2,直线l与⊙O相交于A、B两点,M、N是⊙O上的两个动点,且在直线l的异侧,若∠AMB=45°,则四边形MANB面积的最大值是.

 

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,某农场老板准备建造一个矩形羊圈ABCD,他打算让矩形羊圈的一面完全靠着墙MN,墙MN可利用的长度为25m,另外三面用长度为50m的篱笆围成(篱笆正好要全部用完,且不考虑接头的部分)

(1)若要使矩形羊圈的面积为300m2,则垂直于墙的一边长AB为多少米?

(2)农场老板又想将羊圈ABCD的面积重新建造成面积为320m2,从而可以养更多的羊,请聪明的你告诉他:他的这个想法能实现吗?为什么?

 

查看答案和解析>>

科目:初中数学 来源: 题型:


要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛,则参赛球队的个数是(  )

  A. 5个 B. 6个 C. 7个 D. 8个

 

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,某小区规划在一个长30m、宽20m的长方形ABCD上修建三条同样宽的通道,使其中两条与AB平行,另一条与AD平行,其余部分种花草.要使每一块花草的面积都为78m2,那么通道的宽应设计成多少m?设通道的宽为xm,由题意列得方程  

 

查看答案和解析>>

科目:初中数学 来源: 题型:


楚天汽车销售公司5月份销售某种型号汽车,当月该型号汽车的进价为30万元/辆,若当月销售量超过5辆时,每多售出1辆,所有售出的汽车进价均降低0.1万元/辆.根据市场调查,月销售量不会突破30台.

(1)设当月该型号汽车的销售量为x辆(x≤30,且x为正整数),实际进价为y万元/辆,求y与x的函数关系式;

(2)已知该型号汽车的销售价为32万元/辆,公司计划当月销售利润25万元,那么该月需售出多少辆汽车?(注:销售利润=销售价﹣进价)

 

查看答案和解析>>

科目:初中数学 来源: 题型:


已知:线段a=4cm,b=9cm,c是线段a,b的比例中项,则线段c=     cm.

查看答案和解析>>

同步练习册答案