【题目】已知:如图,抛物线的顶点为A(0,2),与x轴交于B(﹣2,0)、C(2,0)两点.
(1)求抛物线的函数表达式;
(2)设点P是抛物线y上的一个动点,连接PO并延长至点Q,使OQ=2OP.若点Q正好落在该抛物线上,求点P的坐标;
(3)设点P是抛物线y上的一个动点,连接PO并延长至点Q,使OQ=mOP(m为常数);
①证明点Q一定落在抛物线上;
②设有一个边长为m+1的正方形(其中m>3),它的一组对边垂直于x轴,另一组对边垂直于y轴,并且该正方形四个顶点正好落在抛物线和组成的封闭图形上,求线段PQ被该正方形的两条边截得线段长最大时点Q的坐标.
【答案】(1)(2)(,1)(-,1)(3)①见解析②当点Q与正方形右下或左下顶点重合时,PQ被正方形上下两边所截线段最长,此时点Q的坐标为(2+,-5-4)或(-2-,-5-4).
【解析】
(1)用两点式求出抛物线解析式;
(2)设点P坐标,作PE⊥x轴,FQ⊥x轴,利用相似关系求出点Q坐标,因为点Q在抛物线上,所以将点Q坐标代入解析式,求得点P坐标;
(3)①同(2)的方法,求出点Q坐标代入y2解析式,可证明点Q在抛物线y2上;
②因为y1与y2抛物线都是以y轴为对称轴的抛物线,所以正方形也是以y轴对称,从而获得正方形右侧点的横坐标,代入各自解析式获得纵坐标,以右侧两点的纵坐标做差等于正方形边长,列出方程求出m的值,从而获得正方形四个顶点的坐标,由图可知,当Q点与正方形的左下和右下端点重合时PQ被正方形所截的线段最大,从而获得点Q坐标.
解:(1)由条件可设抛物线y1=ax2+2,将C(2,0)代入
可得抛物线;
(2)如图,作PE⊥x轴,FQ⊥x轴
设点P(t,),
利用△PEO∽△OFQ可求得点Q(﹣2t,t2﹣4).
把Q(﹣2t,t2﹣4)代入中,
得:t2﹣4=,
∴3t2=6,
∴t=±,
∴P1(,1),P2(,1);
(3)①证明:设点P(t,),
利用相似可求得点Q(﹣mt,).
将x=﹣mt代入中,
得:.
∴点Q一定落在抛物线上;
②如图所示
∵正方形的边长为m+1,
由抛物线的对称性可知
正方形右边两个顶点横坐标为,
将x=代入抛物线解析式
可得两点纵坐标分别为:和,
∴-=m+1,
解得:.
∵m>3,
∴.
∴正方形右边两个顶点横坐标为,
将x=代入得:
,
∴正方形右下顶点的纵坐标为.
∴正方形右下顶点的坐标为(),
同理,正方形左下顶点的坐标为(,).
设PQ与y轴所成的角为α,当PQ与正方形上下两边相交时,
PQ被正方形上下两边所截线段的长,
当α增大时,cosα减小,增大,
当PQ经过正方形右下顶点时,α最大,PQ被正方形上下两边所截线段最大,此时点Q与正方形右下或左下顶点重合;
当PQ与正方形上右两边(或上左两边)相交时,由图形可知随着α的增大,PQ被正方形上下两边所截线段的长减小,
综上所述,当点Q与正方形右下或左下顶点重合时,PQ被正方形上下两边所截线段最长,
此时点Q的坐标为()或(,).
科目:初中数学 来源: 题型:
【题目】小王电子产品专柜以20元/副的价格批发了某新款耳机,在试销的60天内整理出了销售数据如下
销售数据(第x天) | 售价(元) | 日销售量(副) |
1≤x<35 | x+30 | 100﹣2x |
35≤x≤60 | 70 | 100﹣2x |
(1)若试销阶段每天的利润为W元,求出W与x的函数关系式;
(2)请问在试销阶段的哪一天销售利润W可以达到最大值?最大值为多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线交轴于,两点,交轴于点.直线经过点,.
(1)求抛物线的解析式;
(2)过点的直线交直线于点.
①当时,过抛物线上一动点(不与点,重合),作直线的平行线交直线于点,若以点,,,为顶点的四边形是平行四边形,求点的横坐标;
②连接,当直线与直线的夹角等于的倍时,请直接写出点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,菱形OBCD的边OB在x轴上,反比例函数(x>0)的图象经过菱形对角线的交点A,且与边BC交于点F,点A的坐标为(4,2).
(1)求反比例函数的表达式;
(2)求点F的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为了解九年级男生1000米长跑的成绩,从中随机抽取了50名男生进行测试,根据测试评分标准,将他们的得分进行统计后分为A、B、C、D四等,并绘制成下面的频数分布表和扇形统计图
等级 | 成绩(得分) | 频数(人数) | 频率 |
A | 9~10分 | x | m |
B | 8~7 | 23 | 0.46 |
C | 6~5 | y | n |
D | 5分以下 | 3 | 0.06 |
(1)试直接写出x,y,m,n的值;
(2)求表示得分为C等的扇形的圆心角的度数;
(3)如果该校九年级共有男生400名,试估计这400名男生中成绩达到A等和B等的人数共有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了丰富校园生活,展现同学们英语表达的风采,某校组织了“英语风采大赛”,大赛共设置四个比赛项目.八年级六班的同学们踊跃报名,在“才艺表演”项目中,小怡报名表演古筝,小宏报名表演小提琴,小童报名表演笛子,小灿和小源报名唱英文歌曲.为了取得良好的节目效果,体现公平公正.文体委员决定采用以下方法搭配组合节目:制作5张完全相同的卡片,正面分别写上报名参加比赛同学的姓名,将卡片反面朝上洗匀,然后随机抽取卡片,卡片正面是谁的名字,谁就代表班级参加比赛.
(1)随机抽取一张卡片,求六班才艺表演项目是“乐器独奏”的概率;
(2)随机抽取两张卡片,请用树状图或列表法求小宏和小灿组合参加比赛的概率.(注:可以用分别表示小怡,小宏,小童,小灿,小源的名字)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“雪龙”号考察船在某海域进行科考活动,在点 A 处测得小岛C 在它的东北方向上,它沿南偏东37°方向航行 2 海里到达点 B 处,又测得小岛C 在它的北偏东23°方向上(如图所示),求“雪龙”号考察船在点 B 处与小岛C 之间的距离.(参考数据: sin22°0.37 , cos22°0.93 , tan 22° 0.40 , 1.4 , 1.7 )
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】骆驼被称为“沙漠之舟”,它的体温随时间的变化而发生较大变化,其体温()与时间(小时)之间的关系如图1所示.
小清同学根据图1绘制了图2,则图2中的变量有可能表示的是( ).
A.骆驼在时刻的体温与0时体温的绝对差(即差的绝对值)
B.骆驼从0时到时刻之间的最高体温与当日最低体温的差
C.骆驼在时刻的体温与当日平均体温的绝对差
D.骆驼从0时到时刻之间的体温最大值与最小值的差
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,BD是△ABC的角平分线,它的垂直平分线分别交AB、BC于点E、F、G,连接ED、DG.
(1)请判断四边形EBGD的形状,并说明理由;
(2)若∠ABC=30°,∠C=45°,ED=2,求GC的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com