精英家教网 > 初中数学 > 题目详情

【题目】计算:(1)

(2)

(3)m为正整数).

【答案】(1)0;(2)a12-4nb4m;(3)0.

【解析】

1)运用同底数的幂的乘法法则,然后利用幂的乘方法则计算即可;

(2) 首先利用积的乘方以及幂的乘方法则计算,然后利用同底数的幂的乘法法则计算,最后根据负指数次幂的意义即可;

(3) 将原式中的各因式化为相同底数,再进行加减.

(1)原式=x8+x8-x·x4·x3+x3·x4×(-x

=x8+x8-x8-x8

=0.

(2)原式=(a6-2nb2m-2)(16a6-2nb2m+2

=a12-4nb4m

(3)原式=22m-1×24×(23m-1+(-22m)×23m

=22m+3×23m-3-25m

=25m-25m

=0.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某超市计划购进一批甲、乙两种玩具,已知5件甲种玩具的进价与3件乙种玩具的进价的和为231元,2件甲种玩具的进价与3件乙种玩具的进价的和为141元.

(1)求每件甲种、乙种玩具的进价分别是多少元;

(2)近期批发商有优惠活动,如图所示,如果超市决定在甲、乙两种玩具中选购其中一种,且数量超过20件,请你帮助超市判断购进哪种玩具更省钱.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】湖州素有鱼米之乡之称,某水产养殖大户为了更好地发挥技术优势,一次性收购了 淡水鱼,计划养殖一段时间后再出售.已知每天放养的费用相同,放养 天的总成本为 万元;放养 天的总成本为 万元(总成本=放养总费用+收购成本).
(1)设每天的放养费用是 万元,收购成本为 万元,求 的值;
(2)设这批淡水鱼放养 天后的质量为 ),销售单价为 元/ .根据以往经验可知: 的函数关系为 的函数关系如图所示.

①分别求出当 时, 的函数关系式;
②设将这批淡水鱼放养 天后一次性出售所得利润为 元,求当 为何值时, 最大?并求出最大值.(利润=销售总额-总成本)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC为等边三角形,AE=CD,AD、BE相交于点F.

(1)求证:△ABE≌△CAD;

(2)若BP⊥AD于点P,PF=9,EF=3,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠C=30°,将ABC绕点B旋转α(0<α<60°)到A′BC′,AC和边A′C′相交于点P,边AC和边BC′相交于Q.BPQ为等腰三角形时,则α=__________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小林在某商店购买商品A、B共三次,只有一次购买时,商品A、B同时打折(折扣相同),其余两次均按标价购买.三次购买商品A、B的数量和费用如下表:

购买商品A的数量/

购买商品B的数量/

购买总费用/

第一次购物

6

5

1140

第二次购物

3

7

1110

第三次购物

9

8

1062

(1)小林以折扣价购买商品AB是第 次购物;

(2)求出商品AB的标价;

(3)若商品AB的折扣相同,问商店是打几折出售这两种商品的?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知DE∥BCAB∥CDEAB的中点,∠A=∠B.下列结论:①CD=AE②AC=DE③AC平分∠BCD④O点是DE的中点;⑤AC=AB.其中正确的是(  )

A. ①②④ B. ①③⑤ C. ②③④ D. ②④⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,△ABC在平面直角坐标系中的位置如图所示.

(1)把△ABC向下平移2个单位长度得到△A1B1C1,请画出△A1B1C1

(2)请画出△A1B1C1关于y轴对称的△A2B2C2,并写出A2的坐标;

(3)求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+c经过点A(﹣3,0),B(1,0),C(0,﹣3).

(1)求抛物线的解析式;
(2)若点P为第三象限内抛物线上的一点,设△PAC的面积为S,求S的最大值并求出此时点P的坐标;
(3)设抛物线的顶点为D,DE⊥x轴于点E,在y轴上是否存在点M,使得△ADM是直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案