| A. | $\sqrt{3}$ | B. | 2 | C. | 1 | D. | 5 |
分析 连接BD,DE,则DE的长即为PE+PB的最小值,再根据菱形ABCD中,∠ABC=120°得出∠BCD的度数,进而判断出△BCD是等边三角形,故△CDE是直角三角形,根据勾股定理即可得出DE的长.
解答 解:连接BD,DE,![]()
∵四边形ABCD是菱形,
∴B、D关于直线AC对称,
∴DE的长即为PE+PB的最小值,
∵∠ABC=120°,
∴∠BCD=60°,
∴△BCD是等边三角形,
∵E是BC的中点,
∴DE⊥BC,CE=$\frac{1}{2}$BC=$\frac{1}{2}$×2=1,
∴DE=$\sqrt{C{D}^{2}-C{E}^{2}}=\sqrt{{2}^{2}-{1}^{2}}=\sqrt{3}$.
故选:A
点评 本题考查的是轴对称-最短路线问题,熟知菱形的性质及两点直线线段最短是解答此题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\sqrt{0.5}$ | B. | $\sqrt{24}$ | C. | $\sqrt{2{x}^{3}}$ | D. | $\sqrt{{x}^{2}+{y}^{2}}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com