【题目】在《九章算术》“勾股”章中有这样一个问题:
“今有邑方不知大小,各中开门,出北门二十步有木,出南门十回步,折而西行一千七百七十五步见木.问邑方几何.”用今天的话说,大意是:如图,DEFG是一座正方形小城,北门H位于DG的中点,南门K位于EF的中点,出北门20步到A处有一树木,出南门14步到C,再向西行1775步到B处,正好看到A处的树木(即点D在直线AB上),求小城的边长.
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=x2+bx+c与直线y=x+3交于A,B两点,交x轴于C、D两点,连接AC、BC,已知A(0,3),C(﹣3,0).
(1)求抛物线的解析式;
(2)在抛物线对称轴l上找一点M,使|MB﹣MD|的值最大,并求出这个最大值;
(3)点P为y轴右侧抛物线上一动点,连接PA,过点P作PQ⊥PA交y轴于点Q,问:是否存在点P使得以A,P,Q为顶点的三角形与△ABC相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,有一个长为米的篱笆,一面利用墙(墙的最大长度为米)围成的中间隔有一道篱笆的长方形花圃.设花圃的宽为米,面积为平方米.
求与的函数关系式;
如果要围成花圃的面积为平方米,求的长为多少米?
如果要使围成花圃面积最大,求的长为多少米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线l1:y=2x+1与坐标轴交于A、C两点,直线l2:y=﹣x﹣2与坐标轴交于B、D两点,两线的交点为P点,
(1)求出点P的坐标;
(2)求△APB的面积;
(3)在x轴上是否存在点Q,使得△OPQ的面积等于6,若存在,求出Q点坐标,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,,分别以AB、AC为边作等边三角形ABD与等边三角形ACE,连接BE、CD,BE的延长线与CD交于点F,连接AF,有以下四个结论:①;②FA平分;③;④.其中一定正确的结论有( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面的网格中,每个小正方形的边长均为1个单位.小正方形的顶点叫做格点,以О点为原点,以过О点的水平直线MN为x轴建立平面直角坐标系.
(1)与格点是关于y轴对称,画出;
(2)格点Р在第二象限内,且为等腰直角(注:P不在的边上),画出,并直接写出Р点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市为了鼓励居民节约用水,决定实行两级收费制度,若每月用水量不超过14吨(含14吨),则每吨按政府补贴优惠价m元收费;若每月用水量超过14吨,则超过部分每吨按市场价n元收费.小明家3月份用水20吨,交水费49元;4月份用水18吨,交水费42元.
(1)求每吨水的政府补贴优惠价m和市场价n分别是多少元?
(2)小明家5月份交水费70元,则5月份他家用了多少吨水?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知反比例函数的图像与一正比例函数的图像相交于点,点的坐标是.
(1)求正比例函数的解析式;
(2)若正比例函数的图像与反比例函数的图像在第一象限内交于点,过点作轴的垂线,为垂足,且交直线于点,过点作轴的垂线,为垂足,求梯形的面积;
(3)连结,求的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com