【题目】如图1,AD、BD分别是△ABC的内角∠BAC、∠ABC的平分线,过点A作AE上AD,交BD的延长线于点E.
(1)求证:∠E=∠C;
(2)如图2,如果AE=AB,且BD:DE=2:3,求cos∠ABC的值;
(3)如果∠ABC是锐角,且△ABC与△ADE相似,求∠ABC的度数,并直接写出的值.
【答案】(1)见解析;(2)cos∠ABC的值为2∶3;(3)∠ABC=30°或∠ABC=45°,的值或
【解析】
(1)由AE⊥AD,得到∠DAE=90°,∠E=90°-∠ADE,再由AD平分∠BAC,得到∠ABD∠BAC,即可解答
(2)延长AD交BC于点F,得出,再利用三角函数即可即可
(3)根据题意得出∠ABC=∠E=∠C,继而可得∠ABC=30°,,∠ABC=45°,,即可解答
证明:∵AE⊥AD,
∴∠DAE=90°,∠E=90°-∠ADE.
∵AD平分∠BAC,∴∠BAD∠BAC,同理∠ABD∠BAC
又∵∠ADE=∠BAD+∠ABD,∠BAC+∠ABC=180°-∠C,
∴∠ADE(∠BAC+∠BAC)(180°-∠C).
∴∠E=90°-(180°-∠C)∠C
解:延长AD交BC于点F.
∵AE=AB,∴∠ABE=∠E.
∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠CBE=∠E.
∴AE∥ BC.
∴∠AFB=∠FAE=90°,
又∵BD∶DE=2∶3
∴cos∠ABC=
∴cos∠ABC的值为2∶3.
(3)解:△ABC与△ADE相似,且∠DAE=90°,
∴△ABC中必有一个内角等于90°.
∵ABC是锐角,
∴∠ABC≠90°.
若∠BAC=∠DAE=90°,
∵∠E=∠C,∴∠ABC=∠E=∠C
∵∠ABC+∠C=90°,∴∠ABC=30°.这时
综上所述,∠ABC=30°或∠ABC=45°,的值或
科目:初中数学 来源: 题型:
【题目】学校想知道九年级学生对我国倡导的“一带一路”的了解程度,随机抽取部分九年级学生进行问卷调查,问卷设有4个选项(每位被调查的学生必选且只选一项):A.非常了解.B.了解.C.知道一点.D.完全不知道.将调查的结果绘制如下两幅不完整的统计图,请根据两幅统计图中的信息,解答下列问题:
(1)求本次共调查了多少学生?
(2)补全条形统计图;
(3)该校九年级共有600名学生,请你估计“了解”的学生约有多少名?
(4)在“非常了解”的3人中,有2名女生,1名男生,老师想从这3人中任选两人做宣传员,请用列表或画树状图法求出被选中的两人恰好是一男生一女生的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】列方程解应用题:
中华优秀传统文化是中华民族的“根”和“魂”.为传承优秀传统文化,某校购进《西游记》和《三国演义》若干套,其中每套《西游记》的价格比每套《三国演义》的价格多40元,用3200元购买《三国演义》的套数是用2400元购买《西游记》套数的2倍,求每套《三国演义》的价格.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:.
求作:,使得.
作法:
①以为圆心,任意长为半径画弧,分别交,于点;
②画一条射线,以点为圆心,长为半径画弧,交于点;
③以点为圆心,长为半径画弧,与第②步中所画的弧相交于点;
④过点画射线,则.
根据上面的作法,完成以下问题:
(1)使用直尺和圆规,作出(请保留作图痕迹).
(2)完成下面证明的过程(注:括号里填写推理的依据).
证明:由作法可知,, ,
∴≌( )
∴.( )
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,点E,F分别在边BC,AC上,沿EF所在的直线折叠∠C,使点C的对应点D恰好落在边AB上,若△EFC和△ABC相似,则AD的长为___.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)(探究发现)
如图1,的顶点在正方形两条对角线的交点处,,将绕点旋转,旋转过程中,的两边分别与正方形的边和交于点和点(点与点,不重合).则之间满足的数量关系是 .
(2)(类比应用)
如图2,若将(1)中的“正方形”改为“的菱形”,其他条件不变,当时,上述结论是否仍然成立?若成立,请给出证明;若不成立,请猜想结论并说明理由.
(3)(拓展延伸)
如图3,,,,平分,,且,点是上一点,,求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某海监船以60海里/时的速度从A处出发沿正西方向巡逻,一可疑船只在A的西北方向的C处,海监船航行1.5小时到达B处时接到报警,需巡査此可疑船只,此时可疑船只仍在B的北偏西方向的C处,然后,可疑船只以一定速度向正西方向逃离,海监船立刻加速以90海里/时的速度追击,在D处海监船追到可疑船只,D在B的北偏西方同.(以下结果保留根号)
(1)求B,C两处之问的距离;
(2)求海监船追到可疑船只所用的时间.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数:.
(1)求证:二次函数的图象与x轴有两个交点;
(2)当二次函数的图象与x轴的两个交点的横坐标均为整数,且a为负整数时,求a的值及二次函数的解析式并画出二次函数的图象(不用列表,只要求用其与x轴的两个交点A,B(A在B的左侧),与y轴的交点C及其顶点D这四点画出二次函数的大致图象,同时标出A,B,C,D的位置);
(3)在(2)的条件下,二次函数的图象上是否存在一点P使?如果存在,求出点P的坐标;如果不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com