精英家教网 > 初中数学 > 题目详情
2.如图,在正方形网格中,每一个小正方形的边长都是1,已知向量$\overrightarrow{a}$和$\overrightarrow{b}$的起点、终点都是小正方形的顶点,如果$\overrightarrow{c}$=3$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow{b}$,求作$\overrightarrow{c}$并写出$\overrightarrow{c}$的模(不用写作法,只要所求作向量).

分析 首先作$\overrightarrow{AB}$=$\frac{1}{2}$$\overrightarrow{b}$,$\overrightarrow{AC}$=3$\overrightarrow{a}$,则$\overrightarrow{BC}$为所求;然后利用模的定义,求得$\overrightarrow{c}$的模.

解答 解:如图,$\overrightarrow{AB}$=$\frac{1}{2}$$\overrightarrow{b}$,$\overrightarrow{AC}$=3$\overrightarrow{a}$,则$\overrightarrow{BC}$=$\overrightarrow{AC}$-$\overrightarrow{AB}$=3$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow{b}$,
∴$\overrightarrow{c}$=$\overrightarrow{BC}$;即$\overrightarrow{BC}$为所求;

∴|$\overrightarrow{c}$|=$\sqrt{{1}^{2}+{8}^{2}}$=$\sqrt{65}$.

点评 此题考查了平面向量的知识.注意掌握模的定义与向量的作法.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

15.为美化小区,物业公司计划对面积为3000m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队的1.5倍,如果要独立完成面积为300m2区域的绿化,甲队比乙队少用1天.
(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2
(2)若物业公司每天需付给甲队的绿化费用为0.5万元,需付给乙队的费用为0.4万元,要使这次的绿化总费用不超过11万元,至少应安排甲队工作多少天?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图所示,是函数y=kx+b的图象,利用图象解答:
(1)当x为何值时,y=0?
(2)当x为何值时,y>0?
(3)当x为何值时,y<0?
(4)当y为何值时,x>0?
(5)求方程kx+b=0的解.
(6)求方程kx+b=-2的解.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.等腰三角形腰长为2cm,底边长为2$\sqrt{3}$cm,则顶角为120°,面积为$\sqrt{3}$cm2..

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.如图,△ABC中,AD⊥BC于D,AE平分∠BAC交BC边于点E,∠C=2∠DAE,AC=11,AB=6,则CE=$\frac{55}{6}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.如图,△ABC是⊙O的内接正三角形,弦EF经过BC边的中点D,且EF∥AB,若AB=8,则DE的长为(  )
A.$\sqrt{5}$+1B.2$\sqrt{5}$-2C.2$\sqrt{3}$-2D.$\sqrt{3}$+1

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.长宽比为$\sqrt{n}:1$(n为正整数)的矩形称为$\sqrt{n}$矩形.下面,我们通过折叠的方式折出一个$\sqrt{2}$矩形,如图①所示.
操作1:将正方形ABCD沿过点B的直线折叠,使折叠后的点C落在对角线BD上的点G处,折痕为BH.
操作2:将AD沿过点G的直线折叠,使点A,点D分别落在边AB,CD上,折痕为EF.
则四边形BCEF为$\sqrt{2}$矩形.
证明:设正方形ABCD的边长为1,则BD=$\sqrt{{1^2}+{1^2}}=\sqrt{2}$.
由折叠性质可知BG=BC=1,∠AFE=∠BFE=90°,则四边形BCEF为矩形.
∴∠A=∠BFE.∴EF∥AD.
∴$\frac{BG}{BD}=\frac{BF}{AB}$,即$\frac{1}{{\sqrt{2}}}=\frac{BF}{1}$,∴$BF=\frac{1}{{\sqrt{2}}}$.∴$BC:BF=1:\frac{1}{{\sqrt{2}}}=\sqrt{2}:1$.
∴四边形BCEF为$\sqrt{2}$矩形.
阅读以上内容,回答下列问题:
(1)在图①中,所有与CH相等的线段是GH、DG,tan∠HBC的值是$\sqrt{2}$-1;
(2)已知四边形BCEF为$\sqrt{2}$矩形,模仿上述操作,得到四边形BCMN,如图②,求证:四边形BCMN为$\sqrt{3}$矩形;
(3)将图②中的$\sqrt{3}$矩形BCMN沿用(2)中的方式操作3次后,得到一个“$\sqrt{n}$矩形”,则n的值是6.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.某公司为迎接2014年的巴西世界杯,特制作如图所示1的电子广告牌,并且该广告牌10秒后字样会进行一次上下调换如图2,再过10秒字样又进行一次左右调换(如图3),之后再进行上下调换,…,以此循环,广告牌上的字样要和最初相同,至少需经过(  )
A.30秒B.40秒C.50秒D.60秒

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.如图,△ABC内接于⊙O,∠A=30°,AB是⊙O的直径,D是劣弧AC的中点,连接BD,分别过点B、D作⊙O的切线,两条切线相交于点E,则△BDE的形状是(  )
A.直角三角形B.等腰直角三角形C.等边三角形D.无法确定

查看答案和解析>>

同步练习册答案