精英家教网 > 初中数学 > 题目详情

【题目】如图,四边形ABCD中,ADBC,∠ABC+∠DCB90°,且BC2AD,以ABBCDC为边向外作正方形,其面积分别为S1S2S3,若S14S312,则S2的值为(  )

A.16B.24C.48D.64

【答案】D

【解析】

根据已知条件得到AB2CD2,过AAECDBCE,则∠AEB=∠DCB,根据平行四边形的性质得到CEADAECD2,由已知条件得到∠BAE90°,根据勾股定理得到BE,于是得到结论.

解:∵S14S312

AB2CD2

AAECDBCE

则∠AEB=∠DCB

ADBC

∴四边形AECD是平行四边形,

CEADAECD2

∵∠ABC+∠DCB90°,

∴∠AEB+∠ABC90°,

∴∠BAE90°,

BE

BC2AD

BC2BE8

S2=(8264

故选:D

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,为了测量河对岸l1上两棵古树A、B之间的距离,某数学兴趣小组在河这边沿着与AB平行的直线l2上取C、D两点,测得∠ACB=15°,ACD=45°,若l1、l2之间的距离为50m,则A、B之间的距离为(  )

A. 50m B. 25m C. (50﹣)m D. (50﹣25)m

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(1,2)且与x轴交点的横坐标分别为x1,x2,其中﹣1<x1<0.1<x2<2.下列结论:4a+2b+c<0;2a+b<0;b2+8a>4ac;

a<﹣1;其中结论正确的有( )

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,点DEF分别在ABBCAC边上,且BE=CFBD=CE.

1)求证:△DEF是等腰三角形;

2)当∠A=36°时,求∠DEF的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,P是矩形ABCD的对角线AC的中点,EAD的中点.AB=6,AD=8,则四边形ABPE的周长为( 

A. 14 B. 16 C. 17 D. 18

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,C地在A地的正东方向,因有大山阻隔,由A地到C地需要绕行B地,已知B地位于A地北偏东67°方向,距离A520km,C地位于B地南偏东30°方向,若打通穿山隧道,建成两地直达高铁,求A地到C地之间高铁线路的长(结果保留整数)

(参考数据:sin67°≈0.92;cos67°≈0.38;≈1.73)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,P为平行四边形ABCD的边AD上的一点,EF分别为PBPC的中点,PEFPDCPAB的面积分别为SS1S2.若S=3,则S1+S2的值为( )

A. 3 B. 6 C. 12 D. 24

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】作图与设计:

在图1和图2中,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.

1)在图1中以格点为顶点画一个三角形,使三角形三边长分别为4

2)在图2中以格点为顶点画一个面积为10的正方形;

3)在图3的正方形网格中建立平面直角坐标系,若各顶点的坐标分别为:,请你作,使关于轴对称.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某厂计划生产A、B两种产品共50件.已知A产品每件可获利润1200元,B产品每件可获利润700元,设生产两种产品的获利总额为y(元),生产A产品x(件).

(1)写出yx之间的函数关系式;

(2)若生产A、B两种产品的件数均不少于10件,求总利润的最大值.

查看答案和解析>>

同步练习册答案