分析 (1)由勾股定理得出AB=AC=$\sqrt{{2}^{2}+{1}^{2}}$=$\sqrt{5}$,求出OC=1+$\sqrt{5}$,即可得出点C的坐标;
(2)由$\sqrt{5}$≈2.236,得出|1+$\sqrt{5}$|<3.3,即可得出结果.
解答 解:(1)由勾股定理得:AB=AC=$\sqrt{{2}^{2}+{1}^{2}}$=$\sqrt{5}$,
∴OC=1+$\sqrt{5}$,
∴点C的坐标为(-1-$\sqrt{5}$,0);
(2)∵$\sqrt{5}$≈2.236,
∴|1+$\sqrt{5}$|<3.3,
∴-1-$\sqrt{5}$>-3.3,
即C的横坐标>-3.3.
点评 本题考查了勾股定理、坐标与图形性质、实数大小的比较;熟练掌握勾股定理,由勾股定理得出AB是解决问题的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\root{3}{69}$$>\sqrt{16}$ | B. | -$\sqrt{10}$>$\root{3}{-27}$ | C. | $\frac{\sqrt{7}-2}{2}<\frac{1}{2}$ | D. | $\sqrt{15}<2\sqrt{5}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com