精英家教网 > 初中数学 > 题目详情

【题目】为了大力弘扬和践行社会主义核心价值观,某乡镇在一条公路旁的小山坡上,树立一块大型标语牌AB,如图所示,标语牌底部B点到山脚C点的距离BC为20米,山坡的坡角为30°. 某同学在山脚的平地F处测量该标语牌的高,测得点C到测角仪EF的水平距离CF = 1.7米,同时测得标语牌顶部A点的仰角为45°,底部B点的仰角为20°,求标语牌AB的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36,

【答案】标语牌AB的高度约为12.16

【解析】分析:解直角三角形求处CD的长度,则 然后在直角中即可求得的长,RtAGE中,求得的长,从而求得的高度..

详解:RtBDC中, BC = 20米,

RtBGE中,

RtAGE

答:标语牌AB的高度约为12.16

点睛:考查解直角三角形的应用,结合图形利用三角函数解三角形即可.

型】解答
束】
20

【题目】已知ABO直径,ACO的切线,BCO于点D(如图1).

(1)若AB=2,∠B=30°,求CD的长;

(2) 取AC的中点E,连结DE(如图2),求证:DEO相切.

【答案】(1);(2)见解析

【解析】分析:连接AD ,根据AC是⊙O的切线,AB是⊙O的直径,得到∠CAB=ADB=90°,根据∠B=30°,解直角三角形求得的长度.

连接ODAD.根据DE=CE=EAEDA=EAD. 根据OD=OA,得到

ODA=DAO,得到∠EDA+ODA=EAD+DAO.得到∠EDO=90°即可.

详解:(1)如图,连接AD ,

AC是⊙O的切线,AB是⊙O的直径,

∴∠CAB=ADB=90°,

ΔCABCAD均是直角三角形.

∴∠CAD=B=30°.

RtΔCAB中,AC=ABtan30°=

∴在RtΔCAD中,CD=ACsin30°=

(2)如图,连接ODAD.

AC是⊙O的切线,AB是⊙O的直径,

∴∠CAB=ADB=ADC=90°,

又∵EAC中点,

DE=CE=EA, 

∴∠EDA=EAD.

OD=OA

∴∠ODA=DAO

∴∠EDA+ODA=EAD+DAO.

即:∠EDO=EAO=90°. 

又点D在⊙O上,因此DE与⊙O相切.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知A,B是反比例函数y=(k>0,x>0)图象上的两点,BCx轴,交y轴于点C,动点P从坐标原点O出发,沿OABC(图中“→”所示路线)匀速运动,终点为C,过P作PMx轴,垂足为M.设三角形OMP的面积为S,P点运动时间为t,则S关于x的函数图象大致为(

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】A、B两辆汽车同时从相距330千米的甲、乙两地相向而行,s(千米)表示汽车与甲地的距离,t(分)表示汽车行驶的时间,如图,L1,L2分别表示两辆汽车的st的关系.

(1)L1表示哪辆汽车到甲地的距离与行驶时间的关系?

(2)汽车B的速度是多少?

(3)求L1,L2分别表示的两辆汽车的st的关系式.

(4)2小时后,两车相距多少千米?

(5)行驶多长时间后,A、B两车相遇?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】课外活动时间,甲、乙、丙、丁4名同学相约进行羽毛球比赛.

(1)如果将4名同学随机分成两组进行对打,求恰好选中甲乙两人对打的概率;

(2)如果确定由丁担任裁判,用“手心、手背”的方法在另三人中竞选两人进行比赛.竞选规则是:三人同时伸出“手心”或“手背”中的一种手势,如果恰好只有两人伸出的手势相同,那么这两人上场,否则重新竞选.这三人伸出“手心”或“手背”都是随机的,求一次竞选就能确定甲、乙进行比赛的概率.

【答案】(1);(2)

【解析】分析:列举出将4名同学随机分成两组进行对打所有可能的结果,找出甲乙两人对打的情况数,根据概率公式计算即可.

画树状图写出所有的情况,根据概率的求法计算概率.

详解:(1)甲同学能和另一个同学对打的情况有三种:

(甲、乙),(甲、丙),(甲、丁)

则恰好选中甲乙两人对打的概率为:

(2)树状图如下:

一共有8种等可能的情况,其中能确定甲乙比赛的可能为(手心、手心、手背)、(手背、手背、手心)两种情况,因此,一次竞选就能确定甲、乙进行比赛的概率为.

点睛:考查概率的计算,明确概率的意义时解题的关键,概率等于所求情况数与总情况数的比.

型】解答
束】
22

【题目】为了“绿化环境,美化家园”,312日(植树节)上午8点,某校901、902班同学同时参加义务植树.901班同学始终以同一速度种植树苗种植树苗的棵数y1与种植时间x(小时)的函数图象如图所示;902班同学开始以1小时种植40棵的速度工作了1.5小时后,因需更换工具而停下休息半小时更换工具后种植速度提高至原来的1.5倍.

(1)902班同学上午11点时种植的树苗棵数;

(2)分别求出901班种植数量y1、902班种植数量y2与种植时间x(小时)之间的函数关系式,并在所给坐标系上画出y2关于x的函数图象;

(3)已知购买树苗不多于120棵时,每棵树苗的价格是20元;购买树苗超过120棵时,超过的部分每棵价格17元.若本次植树所购树苗的平均成本是18元,则两班同学上午几点可以共同完成本次植树任务?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知,小明按如下步骤作图:

1)以点O为圆心,适当长为半径画弧,交OAD,交OB于点E

2)分别以点DE为圆心,大于的长为半径画弧,两弧在的内部相交于点C

3)画射线OC

根据上述作图步骤,下列结论正确的有( )个

①射线OC的平分线;②点O和点C关于直线DE对称;③射线OC垂直平分线段DE;④.

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2018个正整数12342018按如图方式排列成一个表.

1)用如图方式框住表中任意4个数,记左上角的一个数为,则另三个数用含的式子表示出来,从小到大依次是____________________________________(请直接填写答案);

2)用(1)中方式被框住的4个数之和可能等于2019吗?如果可能,请求出的值;如果不可能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有大小两种货车,2辆大货车与3辆小货车一次可以运货15.5,5辆大货车与6辆小货车一次可以运货35.

(1)每辆大货车和每辆小货车一次各可以运货多少吨?

(2)现在租用这两种货车共10,要求一次运输货物不低于30,则大货车至少租几辆?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,的位置如图所示.点ABC的坐标分别为,根据下面要求完成解答.

1)作关于点C成中心对称的

2)将向右平移4个单位,作出平移后的

3)在x轴上求作一点P,使的值最小,直接写出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线y=﹣4x+4x轴、y轴分别交于AB两点,以AB为边在第一象限作正方形ABCD,点D在双曲线y上;将正方形ABCD沿x轴负方向平移a个单位长度后,点C恰好落在双曲线在第一象限的分支上,则a的值是_____

查看答案和解析>>

同步练习册答案