精英家教网 > 初中数学 > 题目详情

【题目】某超市计划购进一批甲、乙两种玩具,已知件甲种玩具的进价与件乙种玩具的进价的和为元,件甲种玩具的进价与件乙种玩具的进价的和为元.

1)求每件甲种、乙种玩具的进价分别是多少元;

2)如果购进甲种玩具有优惠,优惠方法是:购进甲种玩具超过件,超出部分可以享受折优惠,若购进件甲种玩具需要花费元,请你写出的函数表达式.

【答案】(1)每件甲种玩具的进价是30元,每件乙种玩具的进价是27元;(2)当0<x20时,y30x;当x>20时,y21x180

【解析】

1)设每件甲种玩具的进价是m元,每件乙种玩具的进价是n元,根据“5件甲种玩具的进价与3件乙种玩具的进价的和为231元,2件甲种玩具的进价与3件乙种玩具的进价的和为141列出方程组求解即可;

2)分不大于20件和大于20件两种情况,分别列出函数关系式即可.

解:(1)设每件甲种玩具的进价是m元,每件乙种玩具的进价是n元.

由题意得

解得

答:每件甲种玩具的进价是30元,每件乙种玩具的进价是27元.

(2)0<x≤20时,y30x

x>20时,y20×30(x20)×30×0.721x180

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点的坐标为,以线段为边在第四象限内作等边三角形,点正半轴上一动点 连接以线段为边在第四象限内作等边三角形,连接并延长,交轴于点

(1)求证

(2)在点的运动过程中,的度数是否会变化?如果不变,请求出的度数;如果变化,请说明理由

(3)当点运动到什么位置时,以为顶点的三角形是等腰三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知如图1,在中,,点的中点,点边上一点,直线垂直于直线于点,交于点.

1)求证:.

2)如图2,直线垂直于直线,垂足为点,交的延长线于点,求证:.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为创建“书香校园”,购置了一批图书,已知购买科普类图书花费10000元,购买文学类图书花费9000元,其中科普类图书平均每本的价格比文学类图书平均每本的价格贵5元,且购买科普类图书的数量与购买文学类图书的数量相等.求科普类图书平均每本的价格.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,点E是边AD的中点,EC交对角线BD于点F,则SCDF:S四边形ABFE等于(  )

A. 1:3 B. 2:5 C. 3:5 D. 4:9

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校九年级学生开展踢毽子比赛活动,每班派5名学生参加,按团体总分多少排列名次,在规定时间内每人踢100个以上(含100个)为优秀.下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个):

1

2

3

4

5

总成绩

甲班

100

98

110

89

103

500

乙班

89

100

95

119

97

500

经统计发现两班总成绩相等,只好将数据中的其他信息作为参考.根据要求回答下列问题:

1)计算两班的优秀率;

2)求两班比赛数据的中位数;

3)求两班比赛数据的方差;

4)根据以上三条信息,你认为应该把冠军奖状发给哪一个班级?简述理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】近期江苏省各地均发布“雾霾”黄色预警,我市某口罩厂商生产一种新型口罩产品,每件制造成本为18元,试销过程中发现,每月销售量y(万件)与销售单价x(元)之间的关系满足下表.

销售单价x(元/件)

20

25

30

40

每月销售量y(万件)

60

50

40

20

(1)请你从所学过的一次函数、二次函数和反比例函数三个模型中确定哪种函数能比较恰当地表示y与x的变化规律,并直接写出y与x之间的函数关系式为__________;

(2)当销售单价为多少元时,厂商每月获得的利润为440万元?

(3)如果厂商每月的制造成本不超过540万元,那么当销售单价为多少元时,厂商每月获得的利润最大?最大利润为多少万元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠C=90°,AC=AB.求证:∠B=30°.

请填空完成下列证明.

证明:如图,作Rt△ABC的斜边上的中线CD,

CD=AB=AD (   ).

∵AC=AB,

∴AC=CD=AD △ACD是等边三角形.

∴∠A=   °.

∴∠B=90°﹣∠A=30°.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在同一条道路上,甲车从地到地,乙车从地到地,乙先出发,图中的折线段表示甲、乙两车之间的距离(千米)与行驶时间(小时)的函数关系的图象,根据图象解决以下问题:

1)乙先出发的时间为 小时,乙车的速度为 千米/时;

2)求线段的函数关系式,并写出自变量的取值范围;

3)甲、乙两车谁先到终点,先到多少时间?

查看答案和解析>>

同步练习册答案