精英家教网 > 初中数学 > 题目详情

【题目】如图,P是正三角形ABC内的一点,且PA5PB12PC13,若将△PAC绕点A逆时针旋转后,得到△PAB,求点P与点P′之间的距离及∠APB的度数.

【答案】5150°

【解析】

连接PP′,根据旋转的性质与等边三角形的判定可证得△AP′P为等边三角形,则PP′AP5∠APP′60°,在△BPP′中,利用勾股定理的逆定理易证△BPP′为直角三角形,∠BPP′90°,然后计算求解即可.

解:如图,连接PP′

∵△ABC为等边三角形,

∴ABAC∠BAC60°

∵△PAC绕点A逆时针旋转后,得到△P′AB

∴∠P′AP∠BAC60°AP′APBP′CP13

∴△AP′P为等边三角形,

∴PP′AP5∠APP′60°

△BPP′中,

∵PP′5BP12BP′13

∴PP′2BP2BP′2

∴△BPP′为直角三角形,∠BPP′90°

∴∠APB∠APP′∠BPP′60°90°150°

即点P与点P′之间的距离为5∠APB的度数为150°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】9分)九年级数学兴趣小组经过市场调查,得到某种运动服每月的销量与售价的相关信息如下表:

售价(元/件)

100

110

120

130


月销量(件)

200

180

160

140


已知该运动服的进价为每件60元,设售价为元.

1)请用含x的式子表示:销售该运动服每件的利润是 元;月销量是 件;(直接写出结果)

2)设销售该运动服的月利润为元,那么售价为多少时,当月的利润最大,最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,⊙O内切于ABC,BOC=105°,ACB=90°,AB=20cm.求BC、AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】《九章算术》是中国传统数学最重要的著作,在勾股章中有这样一个问题:今有邑方二百步,各中开门,出东门十五步有木,问:出南门几步而见木?

用今天的话说,大意是:如图,是一座边长为200步(是古代的长度单位)的正方形小城,东门位于的中点,南门位于的中点,出东门15步的处有一树木,求出南门多少步恰好看到位于处的树木(即点在直线上)?请你计算的长为__________步.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列这些美丽的图案都是在几何画板软件中利用旋转的知识在一个图案的基础上加工而成的,每一个图案都可以看作是它的基本图案绕着它的旋转中心旋转得来的,旋转的角度正确的为(

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知四边形ABCD为正方形,点E为线段AC上一点,连接DE,过点EEFDE,交射线BC于点F,以DEEF为邻边作矩形DEFG,连接CG

(1)求证:矩形DEFG是正方形。

(2)当点EA点运动到C点时;

①求证:∠DCG的大小始终不变;

②若正方形ABCD的边长为2,则点G运动的路径长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在一块直角三角板ABC中,C=90°A=30°BC=1,将另一个含30°角的EDF30°角的顶点D放在AB边上,EF分别在ACBC上,当点DAB边上移动时,DE始终与AB垂直,若CEFDEF相似,则AD=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某服装超市购进单价为30元的童装若干件,物价部门规定其销售单价不低于每件30元,不高于每件60元.销售一段时间后发现:当销售单价为60元时,平均每月销售量为80件,而当销售单价每降低10元时,平均每月能多售出20件.同时,在销售过程中,每月还要支付其他费用450元.设销售单价为x元,平均月销售量为y件.

1)求出yx的函数关系式,并写出自变量x的取值范围.

2)当销售单价为多少元时,销售这种童装每月可获利1800元?

3)当销售单价为多少元时,销售这种童装每月获得利润最大?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=ax+图象与x轴,y轴分别相交于A、B两点,与反比例函数y=(k≠0)的图象相交于点E、F,过F作y轴的垂线,垂足为点C,已知点A(﹣3,0),点F(3,t).

(1)求一次函数和反比例函数的表达式;

(2)求点E的坐标并求△EOF的面积;

(3)结合该图象写出满足不等式﹣ax≤的解集.

查看答案和解析>>

同步练习册答案