精英家教网 > 初中数学 > 题目详情

【题目】如图,等腰RtABC中,∠BAC90°ADBCD,∠ABC的平分线分别交ACADEF两点,MEF的中点,延长AMBC于点N,连接DM,下列结论:①AEAF;②DFDN;③AECN;④△AMD和△DMN的面积相等,其中错误的结论个数是(  )

A.3B.2C.1D.0

【答案】D

【解析】

根据等腰直角三角形的性质及角平分线的定义求得∠ABE=CBE=ABC=22.5°,继而可得∠BFD=AEB=90°-22.5°=67.5°,即可判断①;证出△ADN≌△BFD,可判断②;证△ABF≌△ACN,可判断③;求出∠BAN=BNA =67.5°,可得BA=BN,根据等腰三角形三线合一得AM=MN,可判断④.

解:∵等腰RtABC中,∠BAC=90°ADBCD
AB=AC,∠BCA=ABC=45°=DAC=DABAD=BD=CDADBC
BE平分∠ABC
∴∠ABE=CBE=ABC =22.5°
ABACADBC
∴∠AEB=67.5°,∠BFD=67.5°=AFE
∴∠AFE=AEB
AF=AE
故①正确;
MEF的中点,AE=AF
AMBE,∠DAM=CAM=22.5°
∴∠DAN=CBE=22.5°,且∠ADB=ADNAD=BD
∴△ADN≌△BDF
DF=DN
故②正确;
AB=AC,∠ACB=DAB=45°,∠ABF=CAN=22.5°
∴△ABF≌△ACN
AF=CN

AE=AF
AE=CN
故③正确;
∵∠BAN=BAD+DAN=67.5°,∠BNA=ACB+NAC=67.5°
∴∠BAN=BNA
BA=BN

BE平分∠ABC
AM=MN
∴△AMD和△DMN的面积相等
故④正确.

错误的结论个数是0
故选:D

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,直角坐标系中,在边长为1的正方形网格中,△AOB的顶点均在格点上,点AB的坐标分别是A(3,1),B(2,3).

(1)请在图中画出△AOB关于y轴的对称△AOB′,点A′的坐标为  ,点B′的坐标为  

(2)请写出A′点关于x轴的对称点A′'的坐标为  

(3)求△AOB′的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC与△DCE有公共顶点CAB=CDBC=CE,∠ABC=DCE=90°.

1)如图1,当点DBC延长线上时.

①求证:△ABC≌△DCE.

②判断ACDE的位置关系,并说明理由.

2)如图2,△CDE从(1)中位置开始绕点C顺时针旋转,当点D落在BC边上时停止.

①若∠A=60°,记旋转的度数为,当为何值时,DE与△ABC一边平行.

②如图3,若AB=c BC=a AC=b a>c,边BCDE交于点F,求整个运动过程中,FBC上的运动路程(用含a b c的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,点D、E、F分别在边AB、BC、CA上,且DECA,DFBA.

下列四种说法:①四边形AEDF是平行四边形;②如果BAC=90°,那么四边形AEDF是矩形;③如果AD平分BAC,那么四边形AEDF是菱形;④如果ADBC且AB=AC,那么四边形AEDF是菱形.

其中,正确的有( ) 个.

A.1 B.2 C.3 D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方m处,过了2s后,测得小汽车与车速检测仪间距离为m,这辆小汽车超速了吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一款名为超级玛丽的游戏中,玛丽到达一个高为10米的高台A,利用旗杆顶部的绳索,划过90°到达与高台A水平距离为17米,高为3米的矮台B,求旗杆的高度OM和玛丽在荡绳索过程中离地面的最低点的高度MN.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在等边三角形ABC中,点DBC的中点,点EF分别是边ABAC(含线段ABAC的端点)上的动点,且∠EDF120°,小明和小慧对这个图形展开如下研究:

问题初探:(1)如图1,小明发现:当∠DEB90°时,BE+CFnAB,则n的值为   

问题再探:(2)如图2,在点EF的运动过程中,小慧发现两个有趣的结论:

DE始终等于DF;②BECF的和始终不变;请你选择其中一个结论加以证明.

成果运用:3)若边长AB8,在点EF的运动过程中,记四边形DEAF的周长为LLDE+EA+AF+FD,则周长L 取最大值和最小值时E点的位置?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一副扑克牌中,拿出红桃2、红桃3、红桃4、红桃5四张牌,洗匀后,小明从中随机摸出一张,记下牌面上的数字为x,然后放回并洗匀,再由小华随机摸出一张,记下牌面上的数字为y,组成一对数(x,y).用列表法或树形图表示出(x,y)的所用可能出现的结果;求小明、小华各摸一次扑克牌所确定的一对数是方程x+y=5的解的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+与直线AB交于点A(﹣1,0),B(4,),点D是抛物线A、B两点间部分上的一个动点(不与点A、B重合),直线CDy轴平行,交直线AB于点C,连接AD,BD.

(1)求抛物线的表达式;

(2)设点D的横坐标为m,ADB的面积为S,求S关于m的函数关系式,并求出当S取最大值时的点C的坐标.

查看答案和解析>>

同步练习册答案