精英家教网 > 初中数学 > 题目详情

【题目】如图,在RtABC中,∠C90°AB13BC5,点DE分别在边BCAC上,且BDCE,将CDE沿DE翻折,点C落在点F处,且DFAB,则BD的长为_____

【答案】

【解析】

根据题意作出草图,根据勾股定理求出AC,根据轴对称的性质可得EFCE,根据两直线平行,同位角相等可得∠A=∠EGF,利用相似三角形对应边成比例列式表示出GE,再表示出CG,然后根据平行线分线段成比例定理列式计算即可得解.

解:如图,延长DFAC于点G

BDCEx

∵∠C90°AB13BC5

AC12

∵将CDE沿DE翻折,点C落在点F处,

EFCEx

DFAB

∴∠A=∠EGF

∴△ABC∽△GEF

解得GE

CGGE+CE

DFAB

解得x

BD

故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线yax2bxc的顶点坐标为(29),与y轴交于点A05),与x轴交于点EB.

1)求二次函数yax2bxc的解析式.

2)过点AAC平行于x轴,交抛物线于点C,点P为抛物线上一点(点PAC上方),作PD平行于y轴交AB于点D,问当点P在何位置时,四边形APCD的面积最大?求P坐标及最大面积是多少?

3)若点M在抛物线上,点N在其对称轴上,使得以AENM为顶点的四边形是平行四边形,直接写出M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小丽和小华想利用摸球游戏决定谁去参加市里举办的书法比赛,游戏规则是:在一个不透明的袋子里装有除数字外完全相同的4个小球,上面分别标有数字2345.一人先从袋中随机摸出一个小球,另一人再从袋中剩下的3个小球中随机摸出一个小球.若摸出的两个小球上的数字和为偶数,则小丽去参赛;否则小华去参赛.

1)用列表法或画树状图法,求小丽参赛的概率.

2)你认为这个游戏公平吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,ABDCABAD,对角线ACBD交于点OAC平分∠BAD,过点CCEABAB的延长线于点E,连接OE.

1)求证:四边形ABCD是菱形;(2)若AE5OE3,求线段CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在是平行四边形的对角线的垂直平分线,与边分别交于点

1)求证:四边形是菱形;

2)若,求菱形的面积。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标平面xOy内,点A60)、C(﹣40),过点A作直线AB,交y轴的正半轴于点B,且AB10,点P是直线AB上的一个动点.

1)求点B的坐标和直线AB的表达式;

2)若以APC为顶点的三角形与AOB相似,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】请阅读下面材料,并回答所提出的问题.

三角形内角平分线定理:三角形的内角平分线分对边所得的两条线段和这个角的两边对应成比例.

已知:如图,△ABC中,AD是角平分线.

求证:

证明:过CCEDA,交BA的延长线于E

∴∠1=∠E,∠2=∠3

AD是角平分线,

∴∠1=∠2

∴∠3=∠E

ACAE

又∵CEDA

.……

(1)上述证明过程中,步骤处的理由是_____

(2)用三角形内角平分线定理解答:已知,△ABC中,AD是角平分线,AB7cmAC4cmBC6cm,则BD的长为_____cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程x22a+1x+a2+30有两个实数根x1x2

1)求实数a的取值范围

2)若等腰△ABC的三边长分别为x1x26,求△ABC的周长

3)是否存在实数a,使x1x2恰是一个边长为的菱形的两条对角线的长?若存在,求出这个菱形的面积;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点ABO上,直线ACO的切线,ODOB,连接ABOC于点D

求证:AC=CD

AC=2AO=,求OD的长度.

查看答案和解析>>

同步练习册答案