【题目】定义:若抛物线的顶点与轴的两个交点构成的三角形是直角三角形,则这种抛物线就称为“美丽抛物线”.如图,直线:经过点一组抛物线的顶点,,,…(为正整数),依次是直线上的点,这组抛物线与轴正半轴的交点依次是:,,,…(为正整数).若,当为( )时,这组抛物线中存在美丽抛物线.
A.或B.或C.或D.
【答案】B
【解析】
由抛物线的对称性可知,所有构成的直角三角形必是以抛物线顶点为直角顶点的等腰三角形,所以此等腰三角形斜边上的高等于斜边的一半,又0<d<1,所以等腰直角三角形斜边的长小于2,所以等腰直角三角形斜边的高一定小于1,即抛物线的顶点纵坐标必定小于1,据此对上一步结论分析可得满足美丽抛物线对应的顶点,再确定抛物线与x轴的交点值与对称轴的距离,从而可求得d的值
解: 直线l:经过点M(0,)则b=,
∴直线l:
由抛物线的对称性知:
抛物线的顶点与x轴的两个交点构成的直角三角形必为等腰直角三角形;
∴该等腰三角形的高等于斜边的一半
∵0<d<1
∴该等腰直角三角形的斜边长小于2,斜边上的高小于1(即抛物线的顶点纵坐标小于1)∵当x=1时,<1;
当x=2时, <1;
当x=3时,>1;
∴美丽抛物线的顶点只有
①若为顶点,由,则 ,
②若为顶点,由,则
综上所述,d的值为或 时,存在美丽抛物线.
故选B.
科目:初中数学 来源: 题型:
【题目】(1)如图①,AB为⊙O的直径,点P在⊙O上,过点P作PQ⊥AB,垂足为点Q.说明△APQ∽△ABP;
(2)如图②,⊙O的半径为7,点P在⊙O上,点Q在⊙O内,且PQ=4,过点Q作PQ的垂线交⊙O于点A、B.设PA=x,PB=y,求y与x的函数表达式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AD是⊙O的弦,AC是⊙O直径,⊙O的切线BD交AC的延长线于点B,切点为D,∠DAC=30°.
(1)求证:△ADB是等腰三角形;
(2)若BC= ,则AD的长为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】丹尼斯超市进了一批成本为 8 元/个的文具盒. 调查发现:这种文具盒每个星期的销售量y(个)与它的定价 x(元/个)的关系如图所示:
(1)求这种文具盒每个星期的销售量 y(个)与它的定价 x(元/个)之间的函数关系式(不必写出自变量 x的取值范围);
(2)每个文具盒的定价是多少元,超市每星期销售这种文具盒 (不考虑其他因素)可或得的利润为 1200 元?
(3)若该超市每星期销售这种文具盒的销售量小于 115 个, 且单件利润不低于 4 元(x 为整数),当每个文具盒定价多少 元时,超市每星期利润最高?最高利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】列方程解应用题:
某玩具厂生产一种玩具,按照控制固定成本降价促销的原则,使生产的玩具能够及时售出,据市场调查:每个玩具按元销售时,每天可销售个;若销售单价每降低元,每天可多售出个.已知每个玩具的固定成本为元,问这种玩具的销售单价为多少元时,厂家每天可获利润元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,直线l:与x轴交于点,与y轴交于点B,点C是线段OA上一动点以点A为圆心,AC长为半径作交x轴于另一点D,交线段AB于点E,连结OE并延长交于点F.
求直线l的函数表达式和的值;
如图2,连结CE,当时,
求证:∽;
求点E的坐标;
当点C在线段OA上运动时,求的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校积极开展“阳光体育”活动,并开设了跳绳、足球、篮球、跑步四种运动项目,为了解学生最喜爱哪一种项目,随机抽取了部分学生进行调查,并绘制了如下的条形统计图和扇形统计图(部分信息未给出).
(1)求本次被调查的学生人数;
(2)补全条形统计图;
(3)在扇形统计图中,“篮球”部分所对应的圆心角度数为__ ;
(4)该校共有3000名学生,请估计全校最喜爱篮球的人数比最喜爱足球的人数多多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB是的直径,点P在BA的延长线上,PD切于点D,过点B作,交PD的延长线于点C,连接AD并延长,交BE于点E.
(Ⅰ)求证:AB=BE;
(Ⅱ)连结OC,如果PD=2,∠ABC=60°,求OC的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com