【题目】如图,正方形的边长为2,点在上,四边形也是正方形,以为圆心,长为半径画,连结,,则图中阴影部分面积为( )
A.B.C.D.
科目:初中数学 来源: 题型:
【题目】如图,PA、PB是⊙O的切线,A、B为切点,∠APB=60°,连接PO并延长与⊙O交于C点,连接AC,BC.
(1)求证:四边形ACBP是菱形;
(2)若⊙O半径为1,求菱形ACBP的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】两张矩形纸片ABCD和CEFG完全相同,且AB=CE,AD>AB.
操作发现:
(1)如图1,点D在GC上,连接AC、CF、CG、AG,则AC和CF有何数量关系和位置关系?并说明理由.
实践探究:
(2)如图2,将图1中的纸片CEFG以点C为旋转中心逆时针旋转,当点D落在GE上时停止旋转,则AG和GF在同一条直线上吗?请判断,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某经销商销售一种成本价为10元/kg的商品,已知销售价不低于成本价,且物价部门规定这种产品的销售价不得高于18元/kg.在销售过程中发现销量y(kg)与售价x(元/kg)之间满足一次函数关系,对应关系如下表所示:
x | 12 | 14 | 15 | 17 |
y | 36 | 32 | 30 | 26 |
⑴求y与x之间的函数关系式,并写出自变量x的取值范围;
⑵若该经销商想使这种商品获得平均每天168元的利润,求售价应定为多少元/kg?
⑶设销售这种商品每天所获得的利润为W元,求W与x之间的函数关系式;并求出该商品销售单价定为多少元时,才能使经销商所获利润最大?最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD纸片中,若沿折痕EG对折,则顶点B落在AD边上的点F处,顶点C落在点N处,点M是FN与DC交点,且AD=8.
(1)当点F是AD的中点时,求△FDM的周长;
(2)当点F不与点A,D和AD的中点重合时,若AE+GD=19,求AF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于自变量为的函数,当时,其函数值也为,则称点为此函数的不动点.若函数图象上有两个不动点、,.
(1)若,,,求函数的不动点坐标;
(2)求证;;
(3)若函数,,,当时,
①求证:;
②求证:.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,Rt△ABC的斜边AB在y轴上,边AC与x轴交于点D,AE平分∠BAC交边BC与点E,经过A、D、E三点的即的圆心F恰好在y轴上,⊙F与y轴交于另一点G.
(1)求证:BC是⊙F的切线;
(2)试探究线段AG、AD、CD之间的关系,并证明;
(3)若点A(O,﹣1)、D(2,0),求AB的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知二次函数的图象过点O(0,0),A(4,0),B(2,﹣),M是OA的中点.
(1)求此二次函数的解析式;
(2)设P是抛物线上的一点,过P作x轴的平行线与抛物线交于另一点Q,要使四边形PQAM是菱形,求P点的坐标;
(3)将抛物线在x轴下方的部分沿x轴向上翻折,得曲线OB′A(B′为B关于x轴的对称点),在原抛物线x轴的上方部分取一点C,连接CM,CM与翻折后的曲线OB′A交于点D.若△CDA的面积是△MDA面积的2倍,这样的点C是否存在?若存在求出C点的坐标,若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com