精英家教网 > 初中数学 > 题目详情
8.若关于x的一元二次方程(m-2)x2-2x+1=0有实根,则m的取值范围是(  )
A.m<3B.m≤3C.m<3且m≠2D.m≤3且m≠2

分析 由于x的一元二次方程(m-2)x2-2x+1=0有实根,那么二次项系数不等于0,并且其判别式△是非负数,由此可以建立关于m的不等式组,解不等式组即可求出m的取值范围.

解答 解:∵关于x的一元二次方程(m-2)x2-2x+1=0有实根,
∴m-2≠0,并且△=(-2)2-4(m-2)=12-4m≥0,
∴m≤3且m≠2.
故选D.

点评 本题考查了根的判别式的知识,总结:一元二次方程根的情况与判别式△的关系:
(1)△>0?方程有两个不相等的实数根;
(2)△=0?方程有两个相等的实数根;
(3)△<0?方程没有实数根.
此题切记不要忽略一元二次方程二次项系数不为零这一隐含条件.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

20.计算下列各式,并探求规律:
(x-1)(x+1)=x2-1;
(x-1)(x2+x+1)=x3-1;
(x-1)(x3+x2+x+1)=x4-1;

根据你前面计算各式的结果所发现的规律,猜想:
(x-1)(xn-1+xn-2+…+x2+x+1)=xn-1.(其中n为正整数)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.如图,DC是以AB为直径的半圆上的弦,DM⊥CD交AB于点M,CN⊥CD交AB于点N.AB=10,CD=6.则四边形DMNC的面积(  )
A.等于24B.最小为24C.等于48D.最大为48

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,AB是⊙O的直径,CD是弦,CD⊥AB于点E,点G在直径DF的延长线上,∠D=∠G=30°
(1)求证:$\widehat{CF}$=$\widehat{BC}$.
(2)若CD=6,求GF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.如图,点A在射线OX上,OA的长等于2cm.如果OA绕点O按逆时针方向旋转30°到OA′,那么点A′的位置可以用(2,30°)表示.如果将OA′再沿逆时针方向继续旋转55°到OA′,那么点A′的位置可以用(2,85°)表示.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.计算:
(1)(x+3)2-(x-2)(x+3)
(2)$\frac{1}{a+1}$-$\frac{a+1}{{a}^{2}-2a+1}$÷$\frac{a+1}{a-1}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,抛物线y=a(x-$\sqrt{2}$m)2-m(其中m>1)与其对称轴l相交于点P,与y轴相交于点A(0,m).点A关于直线l的对称点为B,作BC⊥x轴于点C,连接PC、PB,与抛物线、x轴分别相交于点D、E,连接DE.将△PBC沿直线PB翻折,得到△PBC′.
(1)该抛物线的解析式为y=$\frac{1}{m}(x-\sqrt{2}m)^{2}-m$;(用含m的式子表示);
(2)探究线段DE、BC的关系,并证明你的结论;
(3)直接写出C′点的坐标(用含m的式子表示).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.已知方程①2x+y=0;②$\frac{1}{2}$x+y=2;③x2-x+1=0;④2x+y-3z=7是二元一次方程的是(  )
A.①②B.①②③C.①②④D.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.若(x-2)x=1,则x=0或3.

查看答案和解析>>

同步练习册答案