【题目】如图,在中, , 、是腰、上的高,交于点.
()求证: .
()若,求的度数.
【答案】(1)见解析;(2)
【解析】试题分析:(1)首先根据等腰三角形的性质得到∠ABC=∠ACB,然后证明△BEC≌△CDB,得到∠ECB=∠DBC,从而得证;
(2)首先求出∠A的度数,得到∠ACE的度数,进而求出∠COD的度数.
试题解析:解:(1)∵AB=AC,∴∠ABC=∠ACB.
∵BD、CE是△ABC的两条高线,∴∠BEC=∠BDC=90°.
在△BEC和△CDB中,∵∠BEC=∠CDB,∠EBC=∠DCB,BC=CB,∴△BEC≌△CDB,
∴∠DBC=∠ECB,∴OB=OC.
(2)∵∠ABC=65°,AB=AC,∴∠A=180°-2×65°=50°,∴∠ACE=90°-∠A=40°,∴∠COD=90°-∠ACE=90°-40°=50°.
科目:初中数学 来源: 题型:
【题目】解答题
(1)问题发现
如图1,△ABC和△ADE均为等边三角形,点D在边BC上,连接CE.请填空:
①∠ACE的度数为;
②线段AC、CD、CE之间的数量关系为 .
(2)拓展探究
如图2,△ABC和△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,点D在边BC上,连接CE.请判断∠ACE的度数及线段AC、CD、CE之间的数量关系,并说明理由.
(3)解决问题
如图3,在四边形ABCD中,∠BAD=∠BCD=90°,AB=AD=2,CD=1,AC与BD交于点E,请直接写出线段AC的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上,顶点B的坐标为(3, ),点C的坐标为(,0),点P为斜边OB上的一个动点,则PA+PC的最小值为( )
A. B. C. D. 2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一块长方体木块的各棱长如图所示,一只蜘蛛在木块的一个顶点A处,一只苍蝇在这个长方体上和蜘蛛相对的顶点B处,蜘蛛急于捉住苍蝇,沿着长方体的表面向上爬.
(1)如果D是棱的中点,蜘蛛沿“AD→DB”路线爬行,它从A点爬到B点所走的路程为多少?
(2)你认为“AD→DB”是最短路线吗?如果你认为不是,请计算出最短的路程.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为调动销售人员的积极性,A、B两公司采取如下工资支付方式:A公司每月2000元基本工资,另加销售额的2%作为奖金;B公司每月1600元基本工资,另加销售额的4%作为奖金。已知A、B公司两位销售员小李、小张1~6月份的销售额如下表:
(1)请问小李与小张3月份的工资各是多少?
(2)小李1~6月份的销售额与月份的函数关系式是小张1~6月份的销售额也是月份的一次函数,请求出与的函数关系式;
(3)如果7~12月份两人的销售额也分别满足(2)中两个一次函数的关系,问几月份起小张的工资高于小李的工资。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知AB是一段只有3米长的窄道路,由于一辆小汽车与一辆大卡车在AB段相遇,必须倒车才能继续通过.如果小汽车在AB段正常行驶需10分钟,大卡车在AB段正常行驶需20分钟,小汽车在AB段倒车的速度是它正常行驶速度的,大卡车在AB段倒车的速度是它正常行驶的,小汽车需倒车的路程是大卡车的4倍.问两车都通过AB这段狭窄路面的最短时间是 分钟.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:关于x的方程kx2﹣(3k﹣1)x+2(k﹣1)=0
(1)求证:无论k为任何实数,方程总有实数根;
(2)若此方程有两个实数根x1 , x2 , 且|x1﹣x2|=2,求k的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】特值验证:
当,0,1,2,5,…时,计算代数式的值,分别得到5,2,1,2,17,….当x的取值发生变化时,代数式的值却有一个确定的范围,通过多次验证可以发现它的值总大于或等于1,所以1就是它的最小值.
变式求证:
我们可以用学过的知识,对进行恒等变形:.(注:这种变形方法可称为“配方”) ,.所以无论x取何值,代数式的值不小于1,即最小值为1.
迁移实证:
(1)请你用“配方”的方法,确定的最小值为3;
(2)求的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com