【题目】如图,已知矩形ABCD,AB=4,BC=6,点M为矩形内一点,点E为BC边上任意一点,则MA+MD+ME的最小值为( )
A. 3+2B. 4+3C. 2+2D. 10
【答案】B
【解析】
将△AND绕点A逆时针能转60°得到△AM`D',MD=M`D`,易得到△ADD`和△AMM`均为等边三角形,推出AM=MM`可得MA+MD+ME=D`M+MM`+ME,共时最短;由于点E也为动点,可得当D`E⊥BC时最短,此时易求得D`E=DG+GE的值
将△AMD绕点A逆时针旋转60°得到△AM’D’,MD=M’D’,易得到△ADD’和△AMM’均为等边三角形,
∴AM=MM’,
∴MA+MD+ME=D’M+MM’+ME,
∴D′M、MM′、ME共线时最短,
由于点E也为动点,
∴当D’E⊥BC时最短,此时易求得D’E=DG+GE=4+3,
∴MA+MD+ME的最小值为4+3 .
故选:B.
科目:初中数学 来源: 题型:
【题目】如图,抛物线与轴交于,两点,与轴交于点,抛物线的对称轴与轴交于点,顶点坐标为.
(1)求抛物线的表达式和顶点的坐标;
(2)如图1,点为抛物线上一点,点不与点重合,当时,过点作轴,交抛物线的对称轴于点,作轴于点H,得到矩形,求矩形的周长的最大值;
(3)如图2,点为抛物线对称轴上一点,是否存在点,使以点、、为顶点的三角形是直角三角形?若存在,求出点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们把有两边对应相等,且夹角互补(不相等)的两个三角形叫做“互补三角形”,如图1,□ABCD中,△AOB和△BOC是“互补三角形”.
(1)写出图1中另外一组“互补三角形”_______;
(2)在图2中,用尺规作出一个△EFH,使得△EFH和△EFG为“互补三角形”,且△EFH和△EFG在EF同侧,并证明这一组“互补三角形”的面积相等.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙二人从学校出发去新华书店看书,甲步行一段时间后,乙骑自行车沿相同路线行进两人均匀速前行,他们之间的距离s(米)与甲出发时间t(分)之间的函数关系如图所示.下列说法错误的是( )
A. 乙的速度是甲速度的2.5倍
B. a=15
C. 学校到新华书店共3800米
D. 甲第25分钟到达新华书店
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,甲、乙两船同时由港口A出发开往海岛B,甲船沿东北方向向海岛B航行,其速度为15海里/小时;乙船速度为20海里/小时,先沿正东方向航行1小时后,到达C港口接旅客,停留半小时后再转向北偏东30°方向开往B岛,其速度仍为20海里/小时.
(1)求港口A到海岛B的距离;
(2)B岛建有一座灯塔,在离灯塔方圆5海里内都可以看见灯塔,问甲、乙两船哪一艘先看到灯塔?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D.
(1)在图(1)中,用直尺和圆规过点D作⊙O的切线DE交BC于点E;(保留作图痕迹,不写作法)
(2)如图(2),如果⊙O的半径为3,ED=4,延长EO交⊙O于F,连接DF,与OA交于点G,求OG的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AE平分∠BAC,BE⊥AE于点E,点F是BC的中点.
(1)如图1,BE的延长线与AC边相交于点D,求证:EF=(AC﹣AB);
(2)如图2,请直接写出线段AB、AC、EF之间的数量关系。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,C、D为半圆上三等分点,则下列说法:①==;②∠AOD=∠DOC=∠BOC;③AD=CD=OC;④△AOD沿OD翻折与△COD重合.正确的有( )
A. 4个B. 3个C. 2个D. 1个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校为了了解本校1200名学生的课外阅读的情况,现从各年级随机抽取了部分学生对他们一周的课外阅读时间进行了调查,并绘制出如下的统计图①和图②,根据相关信息,解答下列问题:
(1)本次接受随机抽样调查的学生人数为 图①中m的值为 ;
(2)本次调查获取的样本数据的众数为 ,中位数为 ;
(3)求本次调查获取的样本数据平均数;
(4)根据样本数据,估计该校一周的课外阅读时间大于6h的学生人数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com