精英家教网 > 初中数学 > 题目详情

【题目】暑假期间,某学校计划用彩色的地面砖铺设教学楼门前一块矩形操场ABCD的地面.已知这个矩形操场地面的长为100m,宽为80m,图案设计如图所示:操场的四角为小正方形,阴影部分为四个矩形,四个矩形的宽都为小正方形的边长,在实际铺设的过程总,阴影部分铺红色地面砖,其余部分铺灰色地面砖.
(1)如果操场上铺灰色地面砖的面积是铺红色地面砖面积的4倍,那么操场四角的每个小正方形边长是多少米?
(2)如果灰色地面砖的价格为每平方米30元,红色地面砖的价格为每平方米20元,学校现有15万元资金,问这些资金是否能购买所需的全部地面砖?如果能购买所学的全部地面砖,则剩余资金是多少元?如果不能购买所需的全部地面砖,教育局还应该至少给学校解决多少资金?

【答案】
(1)解:设操场四角的每个小正方形边长是x米,根据题意,

得:4x2+(100﹣2x)(80﹣2x)=4[2x(100﹣2x)+2x(80﹣2x)],

整理,得:x2﹣45x+200=0,

解得:x1=5,x2=40(舍去),

故操场四角的每个小正方形边长是5米


(2)解:设铺矩形广场地面的总费用为y元,广场四角的小正方形的边长为x米,

则,y=30×[4x2+(100﹣2x)(80﹣2x)]+20×[2x(100﹣2x)+2x(80﹣2x)]

即:y=80x2﹣3600x+240000

配方得,y=80(x﹣22.5)2+199500

当x=22.5时,y的值最小,最小值为19.95万元>15万元,

故这些资金不能购买所需的全部地面砖,教育局还应该至少给学校解决19.95﹣15=4.95万元资金


【解析】(1)设小正方形的边长为x米,表示出里边大矩形的长为(100﹣2x)米,宽为(80﹣2x)米,利用灰色部分的面积=4个小正方形的面积+里边大矩形的面积,红色部分面积=上下两个矩形面积+左右两个矩形面积,根据灰色地面砖的面积是铺红色地面砖面积的4倍列出关于x的方程,求出方程的解得到x的值,即为小正方形的边长;(2)设铺矩形广场地面的总费用为y元,广场四角的小正方形的边长为x米,根据等量关系“总费用=铺白色地面砖的费用+铺绿色地面砖的费用”列出y关于x的函数,求得最小值,与15万元比较可得是否够用.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,已知点A(﹣2,0),B(2,0),C(3,5).

(1)求过点A,C的直线解析式和过点A,B,C的抛物线的解析式;
(2)求过点A,B及抛物线的顶点D的⊙P的圆心P的坐标;
(3)在抛物线上是否存在点Q,使AQ与⊙P相切,若存在请求出Q点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx﹣5(a≠0)与x轴交于点A(﹣5,0)和点B(3,0),与y轴交于点C.

(1)求该抛物线的解析式;
(2)若点E为x轴下方抛物线上的一动点,当SABE=SABC时,求点E的坐标;
(3)在(2)的条件下,抛物线上是否存在点P,使∠BAP=∠CAE?若存在,求出点P的横坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AD⊥BC,BE⊥AC,垂足分别为D、E,AD与BE相交于点F.
(1)求证:△ACD∽△BFD;
(2)若∠ABD=45°,AC=3时,求BF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=4cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<12),连接DE,当△BDE是直角三角形时,t的值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,二次函数y=ax2+bx+c(a≠0)的图象,有下列4个结论:①abc>0;②b>a+c;③4a+2b+c>0;④b2﹣4ac>0;其中正确的是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线与x轴只有一个交点A(﹣2,0),与y轴交于点B(0,4).

(1)求抛物线对应的函数解析式;
(2)过点B作平行于x轴的直线交抛物线与点C.
①若点M在抛物线的AB段(不含A、B两点)上,求四边形BMAC面积最大时,点M的坐标;
②在平面直角坐标系内是否存在点P,使以P、A、B、C为顶点的四边形是平行四边形,若存在直接写出所有满足条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四边形ADEF是正方形,点B.C分别在边AD、AF上,此时BD=CF,BD⊥CF成立.

(1)当△ABC绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明,若不成立,请说明理由.
(2)当△ABC绕点A逆时针旋转45°时,如图3,延长BD交CF于点H.
①探究BD与CF之间的位置关系,并说明理由;
②当AB= ,AD= +1时,求线段DH的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知式子M=(a+5)x3+7x2﹣2x+5是关于x的二次多项式,且二次项系数为b,数轴上A、B两点所对应的数分别是ab.

(1)a=   ,b=   .A、B两点之间的距离=   

(2)有一动点P从点A出发第一次向左运动1个单位长度,然后在新的位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度…按照如此规律不断地左右运动,当运动到2015次时,求点P所对应的有理数.

(3)在(2)的条件下,点P会不会在某次运动时恰好到达某一位置,使点P到点B的距离是点P到点A的距离的3倍?若可能请求出此时点P的位置,并直接指出是第几次运动,若不可能请说明理由.

查看答案和解析>>

同步练习册答案