【题目】在同一平面直角坐标系中,函数()与的图象可能是( )
A.B.C.D.
【答案】C
【解析】
根据函数()与的图象性质,对各选项图像的象限进行判断分析.
解:A图像错误,反比例函数a>0,则一次函数b=-a<0,直线与y轴交点应在x轴下方,
B图像错误,题干可知反比例函数图像在一三象限则有k=a>0,若k=a>0,那么一次函数的一次项系数a也是大于0,常数项-a小于0,直线应在一、三、四象限,
C图像正确,双曲线在二、四象限时,反比例函数k值小于0,则一次函数k值小于0,b=-a>0,直线在一、二、四象限,
D图像错误,双曲线在二、四象限时,反比例函数k值小于0, 则一次函数k值应小于0,b=-a>0,与y轴交点在x轴上方,直线在一、二、四象限,
故答案选C.
科目:初中数学 来源: 题型:
【题目】如图,在给定的一张平行四边形纸片上作一个菱形.甲、乙两人的作法如下:
甲:连接,作的垂直平分线分别交,,于,,,连接,,则四边形是菱形.
乙:分别作,的平分线,,分别交,于,,连接,则四边形是菱形.
根据两人的作法可判断( )
A. 甲正确,乙错误 B. 乙正确,甲错误
C. 甲、乙均正确 D. 甲、乙均错误
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,,.在边上有个不同的点,,,¨¨¨¨,,过这个点分别作的内接矩形,,¨¨¨¨,,设每个矩形的周长分别为,,¨¨¨¨,,则¨¨¨¨________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某商场设立了一个可以自由转动的转盘,并规定:顾客购物元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.表是活动进行中的一组统计数据:
计算并完成表格:
转动转盘的次数 | ||||||
落在“铅笔”的次数 | ||||||
落在“铅笔”的频率 | ________ | ________ | ________ | ________ | ________ | ________ |
请估计,当很大时,频率将会接近多少?
假如你去转动转盘一次,你获得可乐的概率是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数.
用配方法将化成的形式;
在平面直角坐标系中,画出这个二次函数的图象;
当取何值时,随的增大而减少?
当取何值是,,,,
当时,求的取值范围;
求函数图象与两坐标轴交点所围成的三角形的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平行四边形ABCD的两条对角线相交于O,且AC平分∠DAB.
(1)求证:四边形ABCD是菱形;
(2)若AC=8,BD=6,试求点O到AB的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知Rt△ABC中,∠ACB=90°.请完成以下任务.
(1)尺规作图:①作∠A的平分线,交CB于点D;
②过点D作AB的垂线,垂足为点E.请保留作图痕迹,不写作法,并标明字母.
(2)若AC=3,BC=4,求CD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AC=BC,点D在BC上,作∠ADF=∠B,DF交外角∠ACE的平分线CF于点F.
(1)求证:CF∥AB;
(2)若∠CAD=20°,求∠CFD的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”(如图所示)就是一例.
这个三角形的构造法则为:两腰上的数都是1,其余每个数均为其上方左右两数之和.事实上,这个三角形给出了(为正整数)的展开式(按的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1、、1,恰好对应展开式中各项的系数;第四行的四个数1、、、1,恰好对应着展开式中各项的系数等等.根据上面的规律,的展开式中各项系数最大的数为_______;式子的值为______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com