【题目】如图,已知抛物线L:y=ax2+bx+c(a≠0)与x轴交于A、B两点.与y轴交于C点.且A(﹣1,0),OB=OC=3OA.
(1)求抛物线L的函数表达式;
(2)在抛物线L的对称轴上是否存在一点M,使△ACM周长最小?若存在,求出点M的坐标;若不存在,请说明理由.
(3)连接AC、BC,在抛物线L上是否存在一点N,使S△ABC=2S△OCN?若存在,求出点N的坐标;若不存在,请说明理由.
【答案】(1)y=x2﹣2x﹣3;(2)抛物线对称轴上存在点M(1,﹣2)符合题意;(3)符合条件的点N的坐标是(2,﹣3)或(﹣2,5).
【解析】
(1)运用待定系数法确定函数解析式即可;
(2)点B是点A关于抛物线对称轴的对称点,在抛物线的对称轴上有一点M,要使MA+MC的值最小,则点M就是BC与抛物线对称轴的交点,利用待定系数法求出直线BC的解析式,把抛物线对称轴r=1代入即可求解;
(3)设N(x,x2﹣2x﹣3),根据三角形的面积公式解答即可.
(1)由A(﹣1,0),OB=OC=3OA,得
OB=OC=3,
即B(3,0),C(0,﹣3),
把A,B,C的坐标代入函数解析式,得
,
解得,
抛物线的解析式为y=x2﹣2x﹣3;
(2)∵点A、B关于对称轴对称,
∴点M为BC与对称轴的交点时,MA+MC的值最小.
设直线BC的解析式为y=kx+t(k≠0),
则,
解得:.
∴直线AC的解析式为y=x﹣3.
∵抛物线的对称轴为直线x=1.
∴当x=1时,y=﹣2.
∴抛物线对称轴上存在点M(1,﹣2)符合题意;
(3)设N(x,x2﹣2x﹣3),
∵A(﹣1,0),B(3,0),
∴AB=4,OC=3.
∴S△ABC=ABOC=×4×3=6.
∵S△ABC=2S△OCN,
∴2×OC|x|=6,即|x|=2,
解得x=2或x=﹣2.
当x=2时,x2﹣2x﹣3=﹣3.此时N(2,﹣3).
当x=﹣2时,x2﹣2x﹣3=5.此时N(﹣2,5).
综上所述,符合条件的点N的坐标是(2,﹣3)或(﹣2,5).
科目:初中数学 来源: 题型:
【题目】已知抛物线y1:y=2(x﹣3)2+1和抛物线y2:y=﹣2x2﹣8x﹣3,若无论k取何值,直线y=kx+km+n被两条抛物线所截的两条线段都保持相等,则m=_____,n=_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在四边形ABCD中,∠B=∠C=90°,若AB=4,BC=4,CD=1,问:在BC上是否存在点P,使得AP⊥PD?若存在,求出BP的长;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】现有三张形状大小完全相同的牌,正面分别标有数字2,3,5.将三张牌背面朝上,洗匀后放在桌子上.
(1)从中任取一张,求取到偶数的概率.
(2)甲、乙两人进行摸牌游戏.
①甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相同数字的概率;
②若两人抽取的数字和为2的倍数,则甲获胜;若抽取的数字和为5的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,O为坐标原点,点A(3,0),B(3,4).
(1)画出△AOB绕原点O逆时针旋转90°得到的△A'OB',并写出点A',B'的坐标;
(2)求线段AB在上述旋转过程中扫过的区域面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(10分)水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤,为保证每天至少售出260斤,张阿姨决定降价销售.
(1)若将这种水果每斤的售价降低x元,则每天的销售量是 斤(用含x的代数式表示);
(2)销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,,以为直径作,点D在上,,,垂足为点E,与和分别交于点M、F.连接、、.
(1)证明:是的切线;
(2)若,,求的半径长;
(3)在(2)的条件下,求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】桌面倒扣着背面图案相同的四张卡片,其正面分别标记有数字,先任意抽取一张,卡片上的数记作x,不放回,再抽取一张,卡片上的数字记作y,设点A的坐标为(x,y).
(1)用树状图或列表法列举点A所有的坐标情况;
(2)求点A在抛物线上的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,已知直线y=kx+m与x轴、y轴分别交于A、C两点,抛物线y=﹣x2+bx+c经过A、C两点,点B是抛物线与x轴的另一个交点,当x=﹣时,y取最大值.
(1)求抛物线和直线的解析式;
(2)设点P是直线AC上一点,且S△ABP:S△BPC=1:3,求点P的坐标;
(3)若直线y=x+a与(1)中所求的抛物线交于M、N两点,问:
①是否存在a的值,使得∠MON=90°?若存在,求出a的值;若不存在,请说明理由;
②猜想当∠MON>90°时,a的取值范围(不写过程,直接写结论).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com