【题目】解方程x4﹣6x2+5=0,这是一个一元四次方程,根据该方程的特点,通常解法是:设x2=y,则原方程变形为关于y的方程y2﹣6y+5=0①,解得y1=1,y2=5,从而x2=1,x=±1或x2=5,x=±,所以原方程有四个根x1=,x2=﹣,x3=1,x4=﹣1.
(1)填空:由原方程得到方程①的过程中,利用 法达到降次的目的,体现了 的数学思想.
(2)解方程(x+1)(x+2)(x+3)(x+4)=120.
【答案】(1)换元,转化;(2)x1=1,x2=﹣6.
【解析】
(1)设x2=y,原方程中x4=y2,-6x2=-6y,将x2全部换元成y,利用换元法达到降次的目的,体现了转化的数学思想,
(2)(x+1)(x+4)=x2+5x+4,(x+2)(x+3)=x2+5x+6,设x2+5x=y,则原方程变形为关于y的方程(y+4)(y+6)=120,解出y的值,再求x的值即可.
(1)设x2=y,
则原方程中x4=y2,﹣6x2=﹣6y,
将x2全部换元成y,
利用换元法达到降次的目的,体现了转化的数学思想,
故答案为:换元,转化,
(2)(x+1)(x+4)=x2+5x+4,(x+2)(x+3)=x2+5x+6,
设x2+5x=y,
则原方程变形为关于y的方程(y+4)(y+6)=120,
解得:y=6或﹣16,
即x2+5x=6或x2+5x=﹣16,
解一元二次方程x2+5x=6得:x1=1,x2=﹣6,
方程x2+5x=﹣16无实数根,
故原方程的解为:x1=1,x2=﹣6.
科目:初中数学 来源: 题型:
【题目】有4张正面分别标有数字的不透明卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗匀后从中任取一张,将卡片上的数字记为,另有一个被均匀分成4份的转盘,上面分别标有数字,转动转盘,指针所指的数字记为(若指针指在分割线上则重新转一次),则点落在抛物线与轴所围成的区域内(不含边界)的概率是__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数(a≠0)的图象如图所示,则下列结论中正确的是
A. a>0 B. 当﹣1<x<3时,y>0
C. c<0 D. 当x≥1时,y随x的增大而增大
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图分别是两根木棒及其影子的情形.
(1)哪个图反映了太阳光下的情形?哪个图反映了路灯下的情形?
(2)在太阳光下,已知小明的身高是1.8米,影长是1.2米,旗杆的影长是4米,求旗杆的高;
(3)请在图中分别画出表示第三根木棒的影长的线段.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有两个可以自由转动的均匀转盘,都被分成了3等份,并在每份内均标有数字,如图所示.规则如下:
①分别转动转盘;
②两个转盘停止后,将两个指针所指份内的数字相乘(若指针停止在等份线上,那么重转一次,直到指针指向某一份为止).
【1】用列表法或树状图分别求出数字之积为3的倍数和数字之积为5的倍数的概率;
【2】小明和小亮想用这两个转盘做游戏,他们规定:数字之积为3的倍数时,小明得2分;数字之积为5的倍数时,小亮得3分.这个游戏对双方公平吗?请说明理由;认为不公平的,试修改得分规定,使游戏对双方公平.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+500,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%.
(1)设小明每月获得利润为w(元),求每月获得利润w(元)与销售单价x(元)之间的函数关系式,并确定自变量x的取值范围.
(2)当销售单价定为多少元时,每月可获得最大利润?每月的最大利润是多少?
(3)如果小明想要每月获得的利润不低于2000元,那么小明每月的成本最少需要多少元?(成本=进价×销售量)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,边长为1的正方形ABCD的对角线AC,BD相交于点O,直角∠MPN的顶点P与点O重合,直角边PM,PN分别与OA,OB重合,然后逆时针旋转∠MPN,旋转角为θ(0°<θ<90°),PM、PN分别交AB、BC于E、F两点,连接EF交OB于点G,则下列结论中正确的是_____.
(1)EF=OE;(2)S四边形OEBF:S正方形ABCD=1:4;(3)在旋转过程中,当△BEF与△COF的面积之和最大时,AE=;(4)OGBD=AE2+CF2.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在一次军事演习中,蓝方在一条东西走向的公路上的A处朝正南方向撤退,公路上距A处45千米的红方在B处沿南偏西67°方向前进实施拦截.红方行驶26千米到达C处后,因前方无法通行,红方决定调整方向,再朝南偏西37°方向前进,刚好在D处成功拦截蓝方.求拦截点D处到公路的距离AD.(参考数据:sin67°≈ ,cos67°≈ ,tan67°≈ ,sin37°≈ ,cos37°≈ ,tan37°≈ )
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在Rt△ABC中,∠C=90°,下列结论:(1)sinA<1;(2)若A>60°,则cosA>;(3)若A>45°,则sinA>cosA.其中正确的有( )
A. 0个 B. 1个 C. 2个 D. 3个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com