【题目】函数y=﹣2x2先向右平移1个单位,再向下平移2个单位,所得函数解析式是( )
A. y=﹣2(x﹣1)2+2B. y=﹣2(x﹣1)2﹣2C. y=﹣2(x+1)2+2D. y=﹣2(x+1)2﹣2
科目:初中数学 来源: 题型:
【题目】下列计算结果正确的是( )
A.6x6÷2x3=3x2
B.x2+x2=x4
C.﹣2x2y(x﹣y)=﹣2x3y+2x2y2
D.(﹣3xy2)3=﹣9x3y6
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx(a≠0)的图象经过点A(1,4),对称轴是直线x=﹣,线段AD平行于x轴,交抛物线于点D.在y轴上取一点C(0,2),直线AC交抛物线于点B,连结OA,OB,OD,BD.
(1)求该二次函数的解析式;
(2)求点B坐标和坐标平面内使△EOD∽△AOB的点E的坐标;
(3)设点F是BD的中点,点P是线段DO上的动点,问PD为何值时,将△BPF沿边PF翻折,使△BPF与△DPF重叠部分的面积是△BDP的面积的?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下面材料并解决有关问题:我们知道: ,现在我们可以用这一结论来化简含有绝对值的式子。
如化简代数式|x+1|+|x-2|时,可令x+1=0 或 x-2=0,分别求得x=-1,x=-2(称-1,2分别为|x+1|和|x-2|的零点值。
在有理数范围内,零点值x=-1和x=2,可将全体有理数分成不重复且不遗漏的如下3种情况:(1)<-1;(2)-1x (3)x-2
|从而化简式子|x+1|+|x-2|可分以下3种情况:
(1)当x<-1时,原式=-(x+1)-(x-2)=-2x+1;
(2)当-1x时,原式= x+1-(x-2) =3;
(3)当x-2时,原式=x+1+(x-2)=2x-1
综上所述,原式=
通过以上阅读,请你解决以下问题:“(1)化简|x-4|-|x+2|
(2)|x|+|x+1|+|x+2|
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】
小明同学平时爱好数学,他探索发现了:从2开始,连续的几个偶然相加,它们和的情况的变化规律如下:
2=12
2+4=23
2+4+6=34
2+4+6+8=45
……
请你根据上述规律解答下列问题:
(1)试一试:2+4+6+8+10+12+14+16= ;
(2)猜一猜:2+4+……+2n= ;(用含n的式子表示)
(3)用一用:利用上题的猜想结果,计算202+204+206+……+498+500的值(要有计算过程)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在正方形ABCD中,E、F分别为BC、CD的中点,连接AE、BF,交点为G.
(1)求证:AE⊥BF;
(2)将△BCF沿BF对折,得到△BPF(如图2),延长FP交BA的延长线于点Q,求sin∠BQP的值;
(3)将△ABE绕点A逆时针方向旋转,使边AB正好落在AE上,得到△AHM(如图3),若AM和BF相交于点N,当正方形ABCD的边长为4时,直接写出四边形GHMN的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=-3x+3与x轴、y轴分别交于点A、B,抛物线经过点A、B,并与x轴交于另一点C,其顶点为P.
(1)求,的值;
(2)抛物线的对称轴上有一点Q,使△ABQ是以AB为底边的等腰三角形,求Q点的坐标;
(3)在抛物线及其对称轴上分别取点M、N,使以A,C,M,N为顶点的四边形为正方形,求此正方形的边长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本题7分)数学课上,探讨角平分线的作法时,李老师用直尺和圆规作角平分线,方法如下:
根据以上情境,解决下列问题:
(1)李老师用尺规作角平分线时,用到的三角形全等的判定方法是 .
(2)小聪的作法正确吗?请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com