10£®ÈçͼËùʾ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬Ë«ÇúÏßy=$\frac{k}{x}$£¨x£¼0£©ÉÏÓÐÒ»µãA£¨-2£¬2£©£¬AB¡ÍyÖáÓÚµãB£¬µãCÊÇxÖáÕý°ëÖáÉÏÒ»¶¯µã£¬Ö±ÏßCB½»Ë«ÇúÏßÓÚµãD£¬DE¡ÍxÖáÓÚµãE£¬Á¬½ÓAE£¬AD£¬BE£®
£¨1£©µ±µãCÔ˶¯Ê±£¬ËıßÐÎADBEµÄÐÎ×´Äܱä³ÉÁâÐÎÂð£¿Èç¹ûÄÜ£¬Çó³ö´ËʱµãCµÄλÖã¬Èô²»ÄÜ£¬ËµÃ÷ÀíÓÉ£®
£¨2£©Ð¡Ã÷¾­¹ý̽¾¿·¢ÏÖ£ºµãCÔ˶¯»áÓ°ÏìËıßÐÎADBEÐÎ×´£¬µ«ÊÇADÓëBEµÄλÖùØÏµÊ¼ÖÕ²»±ä£¬ÇëÄã°ïËû½âÊÍÆäÖеÄÔ­Òò£®

·ÖÎö £¨1£©ÈôËıßÐÎADBEΪÁâÐΣ¬ÔòABÓëDE»¥Ïഹֱƽ·Ö£¬ÔòBºÍDµÄ×ø±ê¿ÉÇóµÃ£¬È»ºóÀûÓôý¶¨ÏµÊý·¨ÇóµÃÖ±ÏßBCµÄ½âÎöʽ£¬½ø¶øÇóµÃCµÄ×ø±ê£»
£¨2£©ÉèDµÄ×ø±êÊÇ£¨a£¬-$\frac{4}{a}$£©£¬ÀûÓÃÀûÓôý¶¨ÏµÊý·¨¼´¿ÉÇóÀûÓÃa±íʾ³öADºÍBEµÄ½âÎöʽ£¬¸ù¾ÝÖ±Ï߯½ÐеÄÌõ¼þ¼´¿ÉÅжϣ®

½â´ð ½â£º£¨1£©ÈôËıßÐÎADBEΪÁâÐΣ¬ÔòABÓëDE»¥Ïഹֱƽ·Ö£¬
ÓÉÌâÒâµÃ£¬A£¨-2£¬2£©£¬B£¨0£¬2£©£®
Ôò·´±ÈÀýº¯ÊýµÄ½âÎöʽÊÇy=-$\frac{4}{x}$£¬E£¨-1£¬0£©D£¨-1£¬4£©£®
ÉèÖ±ÏßBDµÄ½âÎöʽÊÇy=kx+b£¬
½«B£¨0£¬2£©£¬D£¨-1£¬4£©´úÈëy=kx+b£¬¿ÉµÃ£º$\left\{\begin{array}{l}{2=b}\\{4=-k+b}\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}{k=-2}\\{b=2}\end{array}\right.$£¬
ÔòÖ±ÏßBDµÄ½âÎöʽÊÇy=-2x+2£¬
ËùÒÔCµÄ×ø±êÊÇ£¨1£¬0£©£»
£¨2£©ÉèDµÄ×ø±êÊÇ£¨a£¬-$\frac{4}{a}$£©£¬Ö±ÏßADµÄ½âÎöʽÊÇy=kx+b£¬ÔòE£¨a£¬0£©£®
½«A£¨-2£¬2£©£¬D£¨a£¬-$\frac{4}{a}$£©´úÈë¿ÉµÃ£º$\left\{\begin{array}{l}{-\frac{4}{a}=ka+b}\\{2=-2k+b}\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}{k=-\frac{2}{a}}\\{b=2-\frac{4}{a}}\end{array}\right.$£¬
ÔòÖ±ÏßADµÄ½âÎöʽÊÇy=-$\frac{2}{a}$x+£¨2-$\frac{4}{a}$£©£®
ͬÀí¿ÉµÃÖ±ÏßBEµÄ½âÎöʽÊÇy=-$\frac{2}{a}$x+2£¬
¡àADºÍBEʼÖÕÆ½ÐУ®

µãÆÀ ±¾Ì⿼²éÁË´ý¶¨ÏµÊý·¨ÇóÒ»´Îº¯ÊýºÍÖ±ÏߵĽâÎöʽ£¬ÕýÈ·ÀûÓÃa±íʾ³öADºÍBEµÄ½âÎöʽÊǽâ¾ö±¾ÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÈçͼËùʾµÄÕý·½ÐÎÍø¸ñÖУ¬¡÷ABCµÄ¶¥µã¾ùÔÚ¸ñµãÉÏ£¬ÇëÔÚËù¸øÖ±½Ç×ø±êϵÖа´ÒªÇó»­Í¼ºÍ½â´ðÏÂÁÐÎÊÌ⣺
£¨1£©½«¡÷ABCÑØxÖá·­ÕÛºóÔÙÑØxÖáÏòÓÒÆ½ÒÆ1¸öµ¥Î»£¬ÔÚͼÖл­³öÆ½ÒÆºóµÄ¡÷A1B1C1£®
£¨2£©×÷¡÷ABC¹ØÓÚ×ø±êÔ­µã³ÉÖÐÐĶԳƵġ÷A2B2C2£®
£¨3£©ÇóB1µÄ×ø±ê£¨-1£¬2£©C2µÄ×ø±ê£¨4£¬1£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®ÓÐÏÂÁÐ˵·¨£¬ÆäÖÐÕýȷ˵·¨µÄ¸öÊýÊÇ£¨¡¡¡¡£©
£¨1£©ÎÞÀíÊý¾ÍÊÇ¿ª·½¿ª²»¾¡µÄÊý£»
£¨2£©ÎÞÀíÊýÊÇÎÞÏÞ²»Ñ­»·Ð¡Êý£»
£¨3£©ÎÞÀíÊý°üÀ¨ÕýÎÞÀíÊý¡¢Áã¡¢¸ºÎÞÀíÊý£»
£¨4£©ÎÞÀíÊýÊÇÎÞÏÞ²»Ñ­»·Ð¡Êý£®
A£®0B£®1C£®2D£®3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÔĶÁÏÂÁвÄÁÏ£º
£¨1£©¹ØÓÚxµÄ·½³Ìx2-3x+1=0£¨x¡Ù0£©·½³ÌÁ½±ßͬʱ³ËÒÔ$\frac{1}{x}$µÃ£º$x-3+\frac{1}{x}=0$¼´$x+\frac{1}{x}=3$£¬${£¨{x+\frac{1}{x}}£©^2}={x^2}+\frac{1}{x^2}+2•x•\frac{1}{x}={x^2}+\frac{1}{x^2}+2$£¬${x^2}+\frac{1}{x^2}={£¨{x+\frac{1}{x}}£©^2}-2={3^2}-2=7$
£¨2£©a3+b3=£¨a+b£©£¨a2-ab+b2£©£»a3-b3=£¨a-b£©£¨a2+ab+b2£©£®
¸ù¾ÝÒÔÉϲÄÁÏ£¬½â´ðÏÂÁÐÎÊÌ⣺
£¨1£©x2-4x+1=0£¨x¡Ù0£©£¬Ôò$x+\frac{1}{x}$=4£¬${x^2}+\frac{1}{x^2}$=14£¬${x^4}+\frac{1}{x^4}$=194£»
£¨2£©2x2-7x+2=0£¨x¡Ù0£©£¬Çó${x^3}+\frac{1}{x^3}$µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÈçͼËùʾ£¬½«Ò»¸ö͸Ã÷µÄÔ²ÖùÐβ£Á§ÈÝÆ÷£¨²»¼Æ±Úºñ£©ÖÐ×°ÈëÌå»ýΪÈÝÆ÷Ò»°ëÈÝ»ýµÄË®£¬µ±Ë®Æ½·ÅÖøÃÈÝÆ÷ʱ£¬Ë®ÃæµÄÐÎ״Ϊ£¨¡¡¡¡£©
A£®Ô²B£®ÍÖÔ²
C£®Ò»°ãµÄƽÐÐËıßÐÎD£®¾ØÐÎ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®Èçͼ£¬ÒÑÖªËıßÐÎABCDÖУ¬ACƽ·Ö¡ÏBAD£¬CE¡ÍABÓÚµãE£¬ÇÒAE=$\frac{1}{2}$£¨AB+AD£©£¬Èô¡ÏD=115¡ã£¬Ôò¡ÏB=65¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®Èçͼ£¬°ë¾¶Îª5µÄ¡ÑAÖУ¬ÏÒBC£¬EDËù¶ÔµÄÔ²ÐĽǷֱðÊÇ¡ÏBAC£¬¡ÏEAD£¬ÒÑÖªDE=6£¬¡ÏBAC+¡ÏEAD=180¡ã£¬ÔòÏÒBCµÄ³¤µÈÓÚ£¨¡¡¡¡£©
A£®$\sqrt{41}$B£®$\sqrt{34}$C£®8D£®6

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÏÂÁмÆËãÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®$\root{3}{8}=¡À2$B£®-$\root{3}{-7}=-\root{3}{7}$C£®$-\sqrt{\frac{16}{9}}=-\frac{4}{3}$D£®$\sqrt{\frac{9}{4}}=¡À\frac{3}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®Ò»³¤·½ÌåµÄÌå»ýΪ162cm2£¬ËüµÄ³¤¡¢¿í¡¢¸ßµÄ±ÈΪ3£º1£º2£¬ÇóËüµÄ¸ß£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸