精英家教网 > 初中数学 > 题目详情

【题目】如图,在BDE中,∠BDE=90°,BD=4,点D的坐标是(5,0),BDO=15°,将BDE旋转到ABC的位置,点CBD 上,则旋转中心的坐标为_______ .

【答案】(3,2)

【解析】

根据旋转的性质,ABBD的垂直平分线的交点即为旋转中心P,连接PD,过PPFx轴于F,再根据点CBD上确定出∠PDB=45°并求出PD的长,然后求出∠PDO=60°,根据直角三角形两锐角互余求出∠DPF=30°,根据直角三角形30°角所对的直角边等于斜边的一半可得DF=PD,利用勾股定理列式求出PF,再求出OF,即可得到点P,即旋转中心的坐标.

如图,ABBD的垂直平分线的交点即为旋转中心P,

连接PD,过PPFx轴于F,

∵点CBD上,

∴点PAB、BD的距离相等,都是BD,即×4=2

∴∠PDB=45°,

PD=×2=4,

∵∠BDO=15°,

∴∠PDO=45°+15°=60°,

∴∠DPF=30°,

DF=PD=×4=2,

∵点D的坐标是(5,0),

OF=OD-DF=5-2=3,

由勾股定理得,PF=

∴旋转中心的坐标为(3,2).

故答案为:(3,2).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,小河上有一拱桥,拱桥及河道的截面轮廓线由抛物线的一部分ACB

矩形的三边AEEDDB组成,已知河底ED是水平的,ED16mAE8m,抛物线的顶点CED

距离是11m,以ED所在的直线为x轴,抛物线的对称轴为y轴建立平面直角坐标系.

(1)求抛物线的解析式;

(2)已知从某时刻开始的40h内,水面与河底ED的距离h(单位:m)随时间t(单位:h)的变化满足函数

关系且当水面到顶点C的距离不大于5m时,需禁止船只通行,请通过计算说明:在这一时段内,需多少小时禁止船只通行?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,点O是等边ABC内的任一点,连接OA,OB,OC.

(1)如图1,已知AOB=150°,BOC=120°,将BOC绕点C按顺时针方向旋转60°得ADC.

DAO的度数是

②用等式表示线段OA,OB,OC之间的数量关系,并证明;

(2)设AOB=α,BOC=β.

①当α,β满足什么关系时,OA+OB+OC有最小值?请在图2中画出符合条件的图形,并说明理由;

②若等边ABC的边长为1,直接写出OA+OB+OC的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,AEBC,FGBC,1=2,D=3+60°,CBD=70°.

(1)求证:ABCD;

(2)求∠C的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,点DAB下方⊙O上一点,点C为弧ABD的中点,连接CDCA

1)求证:ABD=2BDC

2)过点CCHABH,交ADE,求证:EA=EC

3)在(2)的条件下,若OH=5AD=24,求线段DE的长度

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若一个等腰三角形的三边长均满足方程x2-6x+8=0,则此三角形的周长为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,点EBC边上.AE=AB,将线段AC绕点A旋转到AF的位置.使得∠CAF=BAE.连接EFEFAC交于点G

(1)求证:EF =BC

(2)若∠ABC=65°,∠ACB=28°,求∠FGC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】前几天,在青岛召开了举世目的“上合”会议,会议之前需要印刷批宣传彩页.经招标,印务公司中标,该印务公司给出了三种方案供主办方选择:

方案一:每份彩页收印刷费元.

方案二:收制版费元,外加每份彩页收印刷费元.

方案三:印数在份以内时,每份彩页收印刷费元,超过份时,超过部分按每份元收费.

1)分别写出各方案的收费(元)与印刷彩页的份数(份)之间的关系式.

2)若预计要印刷份的宣传彩页,请你帮主办方选择一种合算的方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=2x与反比例函数y=(x>0)的图象交于点A(4,n),ABx轴,垂足为B.

(1)求k的值;

(2)点CAB上,若OC=AC,求AC的长;

(3)点Dx轴正半轴上一点,在(2)的条件下,若SOCD=SACD,求点D的坐标.

查看答案和解析>>

同步练习册答案