精英家教网 > 初中数学 > 题目详情

【题目】如图,四边形是正方形,是等边三角形,为对角线(不含点)上任意一点,将绕点逆时针旋转得到,连接

1)证明:

2)当点在何处时,的值最小,并说明理由;

3)当的最小值为时,则正方形的边长为___________

【答案】1)见解析;(2)当点位于的交点处时,的值最小,理由见解析;(3

【解析】

(1)由题意得MB=NB,∠ABN=15°所以∠EBN=45°容易证出△AMB≌△ENB
(2)根据"两点之间线段最短,当M点位于BDCE的交点处时,AM+BM+CM的值最小,即等于EC的长;
(3)E点作EFBCCB的延长线于F,由题意求出∠EBF=30°设正方形的边长为x,在RtEFC中,根据勾股定理求得正方形的边长为.

解:(1)∵是等边三角形,

,即

又∵

2)如图,连接,当点位于的交点处时,的值最小.

理由如下:

连接

由(1)知,

是等边三角形,

根据“两点之间线段最短”,得最短.

点位于的交点处时,的值最小,即等于的长.

3)正方形的边长为边

点作的延长线于

设正方形的边长为,则

中,

解得,(舍去负值).

∴正方形的边长为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知MB=ND,∠MBA=NDC,下列哪个条件不能判定ABM≌△CDN

A.AM=CNB.AB=CD C.AMCN D.M=N

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】给出定义,若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称该四边形为勾股四边形.

1)在你学过的特殊四边形中,写出两种勾股四边形的名称;

2)如图,将△ABC绕顶点B按顺时针方向旋转60°得到△DBE,连接ADDCCE,已知∠DCB=30°

求证:△BCE是等边三角形;

求证:DC2+BC2=AC2,即四边形ABCD是勾股四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在读书月活动中,学校准备购买一批课外读物.为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),如图是根

据调查结果绘制的两幅不完整的统计图.

请你根据统计图提供的信息,解答下列问题:

(1)本次调查中,一共调查了   名同学;

(2)条形统计图中,m=   ,n=   

(3)扇形统计图中,艺术类读物所在扇形的圆心角是   度;

(4)学校计划购买课外读物6000册,请根据样本数据,估计学校购买其他类读物多少册比较合理?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠B=90°AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点DE运动的时间是t秒(0t≤15).过点DDFBC于点F,连接DEEF

1)求证:AE=DF

2)四边形AEFD能够成为菱形吗?如果能,求出t的值,如果不能,说明理由;

3)在运动过程中,四边形BEDF能否为正方形?若能,求出t的值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】从如图所示的二次函数)的图象中,观察得出了下面5条信息:①.你认为其中正确的信息有(

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在边AB上的点D处,已知MN∥AB,MC=6,NC=2,则四边形MABN的面积是___________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知四边形ABCD⊙O的内接四边形,AC⊙O的直径,DE⊥AB,垂足为E.

(1)延长DE⊙O于点F,延长DC,FB交于点P,如图1.求证:PC=PB;

(2)过点BBG⊥AD,垂足为G,BGDE于点H,且点O和点A都在DE的左侧,如图2.若AB= ,DH=1,∠OHD=80°,求∠BDE的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,BD是矩形ABCD的一条对角线.

(1)BD的垂直平分线EF,分别交ADBC于点EF,垂足为点O(要求用尺规作图,保留作图痕迹,不要求写作法)

(2)(1)中,连接BEDF,求证:四边形DEBF是菱形

查看答案和解析>>

同步练习册答案