精英家教网 > 初中数学 > 题目详情

【题目】如图,边长12的正方形ABCD中,FBC上一点,有一个小正方形EFGH,其中EG分别在ABFD.BF=3,则AH的长为____.

【答案】

【解析】

由在边长为12的正方形ABCD中,有一个小正方形EFGH,根据同角的余角相等,可得∠BFE=CDF,继而证得BEF∽△CFD,然后由相似三角形的对应边成比例,求得BE长,过HHMABM,则∠HMA=HME=90°,求出MHAM长,再根据勾股定理求出即可.

四边形ABCD是正方形,

∴∠B=C=90°

BEFCFD中,

∵∠BFE+CFD=CFD+CDF=90°

∴∠BFE=CDF

∴△BEF∽△CFD

=

BF=3BC=12

CF=BC-BF=12-3=9

=

BE=

HHMABM

则∠HMA=HME=90°

∵四边形ABCD和四边形EHGF是正方形,

∴∠HME=B=90°EH=EF,∠HEF=90°

∴∠MEH+BEF=90°,∠BEF+EFB=90°

∴∠MEH=EFB

HMEEBF,,

∴△HME≌△EBFAAS),

HM=BE=ME=BF=3

AM=AB-EM-BE=12-3-=

RtAMH中,由勾股定理得:AH===

故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】新华商场为迎接家电下乡活动销售某种冰箱,每台进价为2500元,市场调研表明;当销售价定为2900元时,平均每天能售出8台;而当销售价每降低50元时,平均每天就能多售出4台,商场要想使这种冰箱的销售利润平均每天达到5000元,每台冰箱的定价应为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】5G时代即将来临,湖北省提出“建成全国领先、中部一流5G网络”的战略目标.据统计,目前湖北5G基站的数量有1.5万座,计划到2020年底,全省5G基站数是目前的4倍,到2022年底,全省5G基站数量将达到17.34万座.

(1)按照计划,求2020年底到2022年底,全省5G基站数量的年平均增长率;

(2)2023年保持前两年5G基站数量的年平均增长率不变,到2023年底,全省5G基站数量能否超过29万座?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】从三角形(不是等腰三角形)一个顶点引出一条射线于对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.

1)如图1,在ABC中,CD为角平分线,∠A=40°B=60°,求证:CDABC的完美分割线.

2)在ABC中,∠A=48°CDABC的完美分割线,且ACD为等腰三角形,求∠ACB的度数.

3)如图2ABC中,AC=2BC=CDABC的完美分割线,且ACD是以CD为底边的等腰三角形,求完美分割线CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为积极响应新旧动能转换.提高公司经济效益.某科技公司近期研发出一种新型高科技设备,每台设备成本价为30万元,经过市场调研发现,每台售价为40万元时,年销售量为600;每台售价为45万元时,年销售量为550.假定该设备的年销售量y(单位:)和销售单价(单位:万元)成一次函数关系.

(1)求年销售量与销售单价的函数关系式;

(2)根据相关规定,此设备的销售单价不得高于70万元,如果该公司想获得10000万元的年利润.则该设备的销售单价应是多少万元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数yax2+bx+ca≠0)的图象如图所示,其对称轴为直线x=﹣1,与x轴的交点为(x10)、(x20),其中0x11,有下列结论:①abc0;②﹣3x2<﹣2;③4a2b+c<﹣1;④当m为任意实数时,abam2+bm;⑤若点(﹣0.5y1),(﹣2y2)均在抛物线上,则y1y2;⑥a.其中,正确结论的个数为(  )

A.2B.3C.4D.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若二次函数ykx2+3k+2x+2k+2

1)求证:抛物线与x轴有交点.

2)经研究发现,无论k为何值,抛物线经过某些特定的点,请求出这些定点.

3)若y12x+2,在﹣2x<﹣1范围内,请比较y1y的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数的图象过点中点.

1)求此二次函数的解析式.

2)已知,点在抛物线上,点轴上,当四点构成以为边的平行四边形,求此时点的坐标.

3)将抛物线在轴下方的部分沿轴向上翻折,得曲线关于轴的对称点),在原抛物线轴的上方部分取一点,连接与翻折后的曲线交于点. 的面积是面积的3倍,这样的点是否存在?若存在,求出点的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数yax2+bx+ca≠0)图象如图,下列结论:①abc0;②2a+b0;③a-b+c0;④当x≠1时,a+bax2+bx:⑤4acb2.其中正确的有____________(只填序号).

查看答案和解析>>

同步练习册答案