精英家教网 > 初中数学 > 题目详情
如图,平面直角坐标系xOy中,点B、C在x轴上,点A在y轴上,线段BA所在的直线解析式为y=
3
4
x+3,AC⊥AB.

(1)求C点坐标;
(2)袋内E从B点出发,沿线段BA向A点以每秒1个单位的速度运动,点F从点C出发沿射线AC方向以每秒2个单位的速度运动;E、F两点同时出发,当E到达终点时,F点也停止运动,连接EF,以EF为斜边在EF的下方作Rt△EFP,使∠EFP的正切值为
1
2
,过P作BC的垂线,垂足为K,连接EK,设△BEK的面积为S,求出S与t的函数关系式,并直接写出自变量t的取值范围;
(3)在(2)条件下,点Q是y轴上一点,当△PEQ是以PQ为腰的等腰直角三角形时,求t的值.
考点:一次函数综合题
专题:
分析:(1)根据直线AB的解析式即可求得A、B的坐标,从而求得OA、OB,然后根据△AOB∽△COA,即可求得OC,从而求得C的坐标;
(2)连接BP、CP、EP,先求得△PBE∽△PCF,得出∠BPE=∠CPF,从而证得△BPC∽△EPF,得出∠EFP=∠BCP,∠PBC=∠PEF,得出
BK
PK
=
1
2
PK
CK
=
1
2
,进而得出
BK
CK
=
1
4
,从而求得BK、EN,然后根据三角形的面积公式即可求得S与t的函数关系式;
(3)分两种情况分别讨论即可求得.
解答:解:(1)∵点A、B在直线y=
3
4
x+3上,
∴A(0,3),B(-4,0),
∴OA=3,OB=4,
∵AC⊥AB,
∴∠BAC=∠AOC=∠AOB=90°,
∴∠ABO+∠BAO=∠BAO+OAC=90°,
∴∠ABO=∠OAC,
∴△AOB∽△COA,
AO
CO
=
OB
OA

∴OC=
9
4

∴C(
9
4
,0).

(2)如图1,连接BP、CP、EP,作EN⊥BC于N,PK⊥BC于K,
∵∠BAC=∠EPF=90°,
∴∠AEP+∠AFP=180°,
∵∠BEP+∠AEP=180°,
∴∠BEP=∠CFP,
∵BE=t,CF=2t,
PE
PF
=
1
2

BE
CF
=
PE
PF

∴△PBE∽△PCF,
∴∠BPE=∠CPF,
∵∠EPF=90°,
∴∠BPC=∠EPF=90°,
BP
CP
=
EP
FP

∴△BPC∽△EPF,
∴∠EFP=∠BCP,∠PBC=∠PEF,
BK
PK
=
1
2
PK
CK
=
1
2

BK
CK
=
1
4

∵BC=4+
9
4
=
25
4

∴BK=
5
4

∵EN=
3
5
BE=
3
5
t,
∴S=
1
2
BK•EN=
1
2
×
5
4
×
3
5
t=
3
8
t(0<t<5).

(3)由(2)可得:PK=
5
2

∴P(-
11
4
,-
5
2
),
当∠PQE=90°时,如图2,则EN=
3
5
t,BN=
4
5
t,ES=4-
4
5
t,ST=
3
5
t+
5
2

易证△ESQ∽△QTP,
∴QS=PT,
∴4-
4
5
t+
11
4
=
3
5
t+
5
2

∴t=
85
28

当∠EPQ=90°时,如图3,则EN=
3
5
,ET=
3
5
t+
5
2

易证△ETP∽△PVQ,
∴ET=PV,
11
4
=
3
5
t+
5
2

∴t=
5
12

综上所述:t的值为
85
28
5
12
点评:本题是一次函数的综合题,考查了一次函数图象上点的坐标特征,三角形相似的判定和性质,直角三角函数的应用以及三角形面积公式的应用等,根据题意作出图形是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,抛物线y=-x2+2x+m与x轴相交于点A(3,0)和B,与y轴相交于点C.
(1)求m的值和点B的坐标;
(2)点D(x,y)是抛物线上一点,若S△ABD=S△ABC,求点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

小明销售一种文具.销售过程中发现,如果将进价为8元/件的文具按每件10元出售,每天可销售100件.现采用提高售价,减少进货量的办法增加利润,已知这种商品的销售单价每增加1元,其日销售量就要减少10件.设销售价为x元/件时,日销量为y个.
(1)求y关于x的函数关系式;
(2)当销售单价定为多少元时,每日可获得最大利润?最大利润为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

某小商场以每件20元的价格购进一种服装,先试销一周,当售价为38元/件时,每天销量为4件,以后每降价2元/件,则销量增加4件,设销量为t(件),每件的销售价为x(元/件)
(1)试求t与x之间的函数关系式;
(2)在商品不积压且不考虑其它因素的条件下,每件服装的销售定价为多少时,该小商场销售这种服装每天获得的毛利润最大?每天的最大毛利润是多少?(注:每件服装销售的毛利润=每件服装的销售价-每件服装的进货价)

查看答案和解析>>

科目:初中数学 来源: 题型:

一次函数的图象经过点(3,-1),和x轴相交成45°角,求一次函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,把△ABC绕C顺时针旋转35°,得到△A′B′C,若∠BCA′=100°,则∠B′CA=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

AB是⊙O内接正方形的一条边长,AC是同一个⊙O内接正六边形的一条边长,则∠BAC的度数是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AD与BC交与点O,且AB∥CD.
(1)已知BO:BC=1:3,CD=6cm,求AB的长;
(2)已知BO:OC=1:3,AD=8cm,求OA的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,OM平分∠AOC,OM⊥ON,∠BOD=70°,求∠CON.

查看答案和解析>>

同步练习册答案