精英家教网 > 初中数学 > 题目详情

【题目】如图,ORtABC的直角边AC上一点,以OC为半径的⊙O与斜边AB相切于点D,交OA于点E.已知BCAC3.

(1)AD的长;

(2)求图中阴影部分的面积.

【答案】(1)(2)

【解析】

1)首先利用勾股定理求出的长,再证明,进而由可求出;

2)利用特殊角的锐角三角函数可求出的度数,则圆心角的度数可求出,在直角三角形中求出的长,最后利用扇形的面积公式即可求出阴影部分的面积.

(1)RtABC中,∵AC3

BCOC

BC是圆的切线,

∵⊙O与斜边AB相切于点D

BDBC

(2)RtABC中,

∴∠A30°

∵⊙O与斜边AB相切于点D

ODAB

∴∠AOD90°-∠A60°

OD1

.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某市为加固长90米,高30米,坝顶宽为6米,迎水坡和背水坡都是11的横断面是梯形的防洪大坝,要将大坝加高2米,背水坡坡度改为11.5,已知坝顶宽不变,求大坝横戴面积增加多少平方米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将半径为4,圆心角为90°的扇形BACA点逆时针旋转60°,点BC的对应点分别为点DE且点D刚好在上,则阴影部分的面积为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于反比例函数yk≠0),下列所给的四个结论中,正确的是(  )

A. 若点(24)在其图象上,则(﹣24)也在其图象上

B. k0时,yx的增大而减小

C. 过图象上任一点Px轴、y轴的垂线,垂足分别AB,则矩形OAPB的面积为k

D. 反比例函数的图象关于直线yxy=﹣x成轴对称

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线与x轴交于A、B两点,与y轴交C点,点A的坐标为(2,0),点C的坐标为(0,3)它的对称轴是直线

(1)求抛物线的解析式;

(2)M是线段AB上的任意一点,当MBC为等腰三角形时,求M点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在由边长为1的小正方形组成的网格图中,有一个格点三角形ABC.(注:顶点均在网格线交点处的三角形称为格点三角形.)

(1)ABC 三角形(填锐角”、“直角钝角”);

(2)若PQ分别为线段ABBC上的动点,当PCPQ取得最小值时,

在网格中用无刻度的直尺,画出线段PCPQ.(请保留作图痕迹.)

直接写出PCPQ的最小值: .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在水平地面点A处有一网球发射器向空中发射网球,网球飞行路线是一条抛物线,在地面上落点为B.有人在直线AB上点C(靠点B一侧)竖直向上摆放无盖的圆柱形桶,试图让网球落入桶内.已知AB=4 m,AC=3 m,网球飞行最大高度OM=5 m,圆柱形桶的直径为0.5 m,高为0.3 m(网球的体积和圆柱形桶的厚度忽略不计).

(1)如果竖直摆放5个圆柱形桶时,网球能不能落入桶内?

(2)当竖直摆放圆柱形桶多少个时,网球可以落入桶内?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“春种一粒粟,秋收万颗子”,唐代诗人李绅这句诗中的“粟”即谷子(去皮后则称为“小米”),被誉为中华民族的哺育作物.某商场销售一种品牌的小米,进价是40元/袋.市场调查后发现,售价是60元/袋时,平均每星期的销售量是300袋,而销售单价每降低1元,平均每星期就可多售出30袋.

(1)若每袋小米降价x元,写出该商场销售该品牌小米每星期获得的利润w(元)与x(元)之间的函数关系式.

(2)在(1)的条件下,每袋小米的销售单价是多少元时,该商场每星期销售这种品牌小米获得的利润最大?最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知如图 1,在ABC 中,ACB90°BCAC,点 D AB 上,DEAB BC E,点 F AE 的中点

1 写出线段 FD 与线段 FC 的关系并证明;

2 如图 2,将BDE 绕点 B 逆时针旋转αα90°),其它条件不变,线段 FD 与线段 FC 的关系是否变化,写出你的结论并证明;

3 BDE 绕点 B 逆时针旋转一周,如果 BC4BE2,直接写出线段 BF 的范围.

查看答案和解析>>

同步练习册答案