【题目】如图,抛物线y=x2在第一象限内经过的整数点(横坐标,纵坐标都为整数的点)依次为A1,A2,A3,…An,….将抛物线y=x2沿直线L:y=x向上平移,得一系列抛物线,且满足下列条件:①抛物线的顶点M1,M2,M3,…Mn,…都在直线L:y=x上;②抛物线依次经过点A1,A2,A3…An,….则顶点M1的坐标为_____,顶点M2的坐标为_____,顶点M2018的坐标为_____.
【答案】(1,1), (3,3), (4035,4035).
【解析】
根据抛物线的解析式结合整数点的定义,找出点An的坐标为(n,n2),设点Mn的坐标为(a,a),则以点Mn为顶点的抛物线解析式为y=(xa)2+a,由点An的坐标利用待定系数法,即可求出a值,将其代入点Mn的坐标即可得出结论.
解:∵抛物线y=x2在第一象限内经过的整数点(横坐标、纵坐标都为整数的点)依次为A1,A2,A3,…,An,…,
∴点An的坐标为(n,n2).
设点Mn的坐标为(a,a),则以点Mn为顶点的抛物线解析式为y=(x﹣a)2+a,
∵点An(n,n2)在抛物线y=(x﹣a)2+a上,
∴n2=(n﹣a)2+a,解得:a=2n﹣1或a=0(舍去),
∴Mn的坐标为(2n﹣1,2n﹣1),
∴顶点M1的坐标为(1,1),顶点M2的坐标为(3,3),顶点M2018的坐标为(4035,4035),
故答案为:(1,1),(3,3),(4035,4035).
科目:初中数学 来源: 题型:
【题目】如图,利用一面长为34米的墙,用铁栅栏围成一个矩形自行车场地ABCD,在AB和BC边各有一个2米宽的小门(不用铁栅栏).设矩形ABCD的边AD长为x米,AB长为y米,矩形的面积为S平方米,且x<y.
(1)若所用铁栅栏的长为40米,求y与x的函数关系式,并直接写出自变量x的取值范围;
(2)在(1)的条件下,求S与x的函数关系式,并求出怎样围才能使矩形场地的面积为192平方米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,AC=6,BD=6,E是BC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是( )
A. 6 B. 3 C. 2 D. 4.5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:抛物线y=-+bx+c经过A(-1,0)、B(5,0)两点,顶点为P.
求:(1)求b,c的值;
(2)求△ABP的面积;
(3)若点C(,)和点D(,)在该抛物线上,则当时,请写出与的大小关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小红的父母开了一个小服装店,出售某种进价为元的服装,现每件元,每星期可卖件.该同学对市场作了如下调查:每降价元,每星期可多卖件;每涨价元,每星期要少卖件.
小红已经求出在涨价情况下一个星期的利润(元)与售价(元)(为整数)的函数关系式为,请你求出在降价的情况下与的函数关系式;
在降价的条件下,问每件商品的售价定为多少时,一个星期的利润恰好为元?
问如何定价,才能使一星期获得的利润最大?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知是等腰直角三角形,,点D是BC的中点作正方形DEFG,使点A、C分别在DG和DE上,连接AE,BG.
试猜想线段BG和AE的数量关系是______;
将正方形DEFG绕点D逆时针方向旋转,
判断中的结论是否仍然成立?请利用图2证明你的结论;
若,当AE取最大值时,求AF的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程x2+(k﹣5)x+1﹣k=0(其中k为常数).
(1)求证无论k为何值,方程总有两个不相等实数根;
(2)已知函数y=x2+(k﹣5)x+1﹣k的图象不经过第三象限,求k的取值范围;
(3)若原方程的一个根大于3,另一个根小于3,求k的最大整数值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形 ABCD 的对角线 AC 与 BD 相交于点 O,CE∥BD, DE∥AC , AD=2, DE=2,则四边形 OCED 的面积为( )
A. 2 B. 4 C. 4 D. 8
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com