精英家教网 > 初中数学 > 题目详情

【题目】矩形纸片ABCD中,已知AD=8AB=6E是边BC上的点,以AE为折痕折叠纸片,使点B落在点F处,连接FC,当△EFC为直角三角形时,BE的长为   

【答案】36

【解析】试题分析:

由题意可知有两种情况,见图1与图2

1:当点F在对角线AC上时,∠EFC=90°

∵∠AFE=∠B=90°∠EFC=90°

AFC共线,

矩形ABCD的边AD=8

∴BC=AD=8

Rt△ABC中,AC==10

BE=x,则CE=BC﹣BE=8﹣x

由翻折的性质得,AF=AB=6EF=BE=x

∴CF=AC﹣AF=10﹣6=4

Rt△CEF中,EF2+CF2=CE2

x2+42=8﹣x2

解得x=3

BE=3

2:当点F落在AD边上时,∠CEF=90°

由翻折的性质得,∠AEB=∠AEF=×90°=45°

四边形ABEF是正方形,

∴BE=AB=6

综上所述,BE的长为36

故答案为:36

考点:1、轴对称(翻折变换);2、勾股定理

型】填空
束】
15

【题目】计算:()2+(﹣4)0cos45°.

【答案】1

【解析】试题分析:把原式的第一项根据负整数指数幂的意义化简,第二项根据算术平方根的定义求出9的算术平方根,第三项根据零指数公式化简,最后一项利用特殊角的三角函数值化简,合并后即可求出值.

试题解析:原式=4﹣3+1﹣

=2﹣1

=1.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某学校在开展“书香校园”活动期间,对学生课外阅读的喜好进行抽样调查(每人只选一种书籍),将调查结果绘制成如图所示的两幅不完整的统计图,根据图中的信息,解答下列问题:

(1)这次调查的学生人数为  人,扇形统计图中m的值为  

(2)补全条形统计图;

(3)如果这所学校要添置学生课外阅读的书籍1500册,请你估计“科普”类书籍应添置多少册比较合适?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲口袋中装有两个相同的小球,它们的标号分别为2和7,乙口袋中装有两个相同的小球,它们的标号分别为4和5,丙口袋中装有三个相同的小球,它们的标号分别为3,8,9.从这3个口袋中各随机地取出1个小球.

1求取出的3个小球的标号全是奇数的概率是多少?

2以取出的三个小球的标号分别表示三条线段的长度,求这些线段能构成三角形的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A在点B的左边,线段AB的长为20cm;点C在点D的左边,点CD在线段AB上,CD=10cm,点E是线段AC的中点,点F是线段BD的中点

1)若AC=4cm,求线段EF的长;

2)若AC=acm,用含a的式子表示线段BF的长

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在同一平面坐标系中,函数y=mx+m和y=﹣mx2+2x+2(m是常数,且m0)的图象可能是(  )

A. B. C. D.

【答案】D

【解析】A.由函数y=mx+m的图象可知m<0,即函数y=mx2+2x+2开口方向朝上,与图象不符,故A选项错误;

B.由函数y=mx+m的图象可知m<0,对称轴为x=<0,则对称轴应在y轴左侧,与图象不符,故B选项错误;

C.由函数y=mx+m的图象可知m>0,即函数y=mx2+2x+2开口方向朝下,与图象不符,故C选项错误;

D.由函数y=mx+m的图象可知m<0,即函数y=mx2+2x+2开口方向朝上,对称轴为x=<0,则对称轴应在y轴左侧,与图象相符,故D选项正确;

故选:D.

型】单选题
束】
10

【题目】如图,已知菱形ABCD的周长为16,面积为,EAB的中点,若P为对角线BD上一动点,则EP+AP的最小值为(  )

A. 2 B. 2 C. 4 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,ABC的平分线交AD于点F.若BF=12,AB=10,则AE的长为(  )

A. 10 B. 12 C. 16 D. 18

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在半径为4O中,ABCD是两条直径,MOB的中点,CM的延长线交O于点E,且EMMC.连接DEDE=

(1)求证:AMMB=EMMC;

(2)求EM的长;

(3)求sin∠EOB的值.

【答案】(1)证明见解析(2)4(3)

【解析】1)连接ACEB点,那么只需要求出△AMC△EMB相似,即可求出结论,根据圆周角定理可推出它们的对应角相等,即可得△AMC∽△EMB

2)根据圆周角定理,结合勾股定理,可以推出EC的长度,根据已知条件推出AMBM的长度,然后结合(1)的结论,很容易就可求出EM的长度;

3)过点EEF⊥AB,垂足为点F,通过作辅助线,解直角三角形,结合已知条件和(1)(2)所求的值,可推出Rt△EOF各边的长度,根据锐角三角函数的定义,便可求得sin∠EOB的值.

型】解答
束】
21

【题目】为大力弘扬奉献、友爱、互助、进步的志愿服务精神,传播奉献他人、提升自我的志愿服务理念,合肥市某中学利用周末时间开展了助老助残、社区服务、生态环保、网络文明四个志愿服务活动(每人只参加一个活动),九年级某班全班同学都参加了志愿服务,班长为了解志愿服务的情况,收集整理数据后,绘制以下不完整的统计图,请你根据统计图中所提供的信息解答下列问题:

(1)请把折线统计图补充完整;

(2)求扇形统计图中,网络文明部分对应的圆心角的度数;

(3)小明和小丽参加了志愿服务活动,请用树状图或列表法求出他们参加同一服务活动的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】依据下列解方程的过程,请在前面括号内填写变形步骤,在后面的括号内填写变形依据.

解:原方程可变形为

去分母,得.(____________________)

去括号,得.(____________________)

移项,得.(____________________)

合并,得.(合并同类项)

(______),得.______________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】用橡皮泥做一个棱长为4cm的正方体.

(1)如图(1),在顶面中心位置处从上到下打一个边长为1cm的正方形通孔,打孔后的橡皮泥的表面积是多少?;

(2)如果在第(1)题打孔后,再在正面中心位置处(按图(2)中的虚线)从前到后打一个边长为1cm的正方形通孔,那么打孔后的橡皮泥的表面积为是多少?;

(3)如果把第(2)题中从前到后所打的正方形通孔扩大成一个长xcm、宽1cm的长方形通孔,能不能使所得橡皮泥的表面积为130cm2?如果能,请求出x;如果不能,请说明理由.

查看答案和解析>>

同步练习册答案