精英家教网 > 初中数学 > 题目详情

【题目】如图,平行四边形ABCD中,点O是对角线AC的中点,点E在边AB上,连接DE,取DE的中点F,连接EO并延长交CD于点G.若BE=3CGOF=2,则线段AE的长是_____

【答案】.

【解析】

已知点O是对角线AC的中点,DE的中点为F,可得OF为△EDG的中位线,根据三角形的中位线定理可得DG=2OF=4;由平行四边形的性质可得ABCDAB=CD,即可得∠EAO=GCO,再判定△AOE≌△COG,根据全等三角形的性质可得AE=CG,即可得BE=DG=4,再由BE=3CG即可求得AE=CG=.

∵点O是对角线AC的中点,DE的中点为F

OF为△EDG的中位线,

DG=2OF=4

∵四边形ABCD为平行四边形,

ABCDAB=CD

∴∠EAO=GCO

在△AOE和△COG中,

,

∴△AOE≌△COG

AE=CG

AB=CD

BE=DG=4,

BE=3CG

AE=CG=.

故答案为:.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,正方形的边长为,点上,且,四边形的面积为__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(2016浙江省衢州市)如图1,在直角坐标系xoy中,直线ly=kx+bx轴,y轴于点EF,点B的坐标是(2,2),过点B分别作x轴、y轴的垂线,垂足为AC,点D是线段CO上的动点,以BD为对称轴,作与BCD或轴对称的BCD

(1)当∠CBD=15°时,求点C的坐标.

(2)当图1中的直线l经过点A,且时(如图2),求点DCO的运动过程中,线段BC扫过的图形与OAF重叠部分的面积.

(3)当图1中的直线l经过点DC时(如图3),以DE为对称轴,作于DOE或轴对称的DOE,连结OCOO,问是否存在点D,使得DOECOO相似?若存在,求出kb的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(感知)如图①在等边ABC和等边ADE中,连接BDCE,易证:ABD≌△ACE

(探究)如图②△ABCADE中,∠BAC=DAE,∠ABC=ADE,求证:ABD∽△ACE

(应用)如图③,点A的坐标为(06),AB=BO,∠ABO=120°,点Cx轴上运动,在坐标平面内作点D,使AD=CD,∠ADC=120°,连结OD,则OD的最小值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在数轴上,把表示数的点称为基准点,记作点.对于两个不同的点,若点、点到点的距离相等,则称点和点互为基准变换点.例如:下图中,点表示数,点N表示数,它们与基准点的距离都是个单位长度,点与点互为基准变换点.

(1)已知点表示数,点表示数,点与点互为基准变换点.

①若,则_______

②用含的式子表示,则_____

(2)对点进行如下操作:先把点表示的数乘以,再把所得数表示的点沿着数轴向左移动个单位长度得到点.若点与点互为基准变换点,则点表示的数是_____________

3)点在点的左边,点与点之间的距离为个单位长度.对两点做如下操作:点沿数轴向右移动个单位长度得到的基准变换点,点沿数轴向右移动个单位长度得到的基准变换点,……,依此顺序不断地重复,得到的基准变换点,将数轴沿原点对折后的落点为的基准变换点,将数轴沿原点对折后的落点为……,依此顺序不断地重复,得到.若无论为何值,两点间的距离都是,则_________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为了改善办公条件,计划从厂家购买AB两种型号电脑。已知每台A种型号电脑价格比每台B种型号电脑价格多0.1万元,且用10万元购买A种型号电脑的数量与用8万元购买B种型号电脑的数量相同.

1)求AB两种型号电脑每台价格各为多少万元?

2)学校预计用不多于9.2万元的资金购进这两种电脑共20台,则最多可购买A种型号电脑多少台?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,,…都是等腰直角三角形,其直角顶点,…均在直线.,…的面积分别为,…,根据图形所反映的规律,

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知ABACAD为∠BAC的角平分线,DEF为∠BAC的角平分线上的若干点.如图1,连接BDCD,图中有1对全等三角形;如图2,连接BDCDBECE,图中有3对全等三角形;如图3,连接BDCDBECEBFCF,图中有6对全等三角形;依此规律,第n个图形中有_____对全等三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在凸四边形中,.

1)利用尺规,以为边在四边形内部作等边(保留作图痕迹,不需要写作法).

2)连接,判断四边形的形状,并说明理由.

查看答案和解析>>

同步练习册答案