【题目】如图是某区1500名小学生和初中生的视力情况和他们每节课课间户外活动平均时长的统计图.
(1)根据图1,计算该区1500名学生的近视率;
(2)根据图2,从两个不同的角度描述该区1500名学生各年级近视率的变化趋势;
(3)根据图1、图2、图3,描述该区1500名学生近视率和所在学段(小学、初中)、每节课课间户外活动平均时长的关系.
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2﹣5ax+c与坐标轴分别交于点A,C,E三点,其中A(﹣3,0),C(0,4),点B在x轴上,AC=BC,过点B作BD⊥x轴交抛物线于点D,点M,N分别是线段CO,BC上的动点,且CM=BN,连接MN,AM,AN.
(1)求抛物线的解析式及点D的坐标;
(2)当△CMN是直角三角形时,求点M的坐标;
(3)试求出AM+AN的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,∠ABC=60°,M为AD的中点,连接BM,交AC于E,在CB上取一点F,使得CF=AE,连接AF,交BM于G,连接CG.
(1)求∠BGF的度数;
(2)求的值;
(3)求证:BG⊥CG.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在数学课上,老师提出如下问题:
已知:∠α,直线l和l上两点A,B.
求作:Rt△ABC,使点C在直线l的上方,且∠ABC=90°,∠BAC=∠α.
小刚的做法如下:
①以∠α的顶点O为圆心,任意长为半径作弧,交两边于M,N;以A为圆心,同样长为半径作弧,交直线l于点P;
②以P为圆心,MN的长为半径作弧,两弧交于点Q,作射线AQ;
③以B为圆心,任意长为半径作弧,交直线l于E,F;
④分别以E,F为圆心,大于长为半径作弧,两弧在直线l上方交于点G,作射线BG;
⑤射线AQ与射线BG交于点C.Rt△ABC即为所求.
(1)使用直尺和圆规,补全图形;(保留作图痕迹)
(2)完成下面的证明:
连接PQ
在△OMN和△AQP中,
∵ON=AP,PQ=NM,OM=AQ
∴△OMN ≌△AQP(__________)(填写推理依据)
∴∠PAQ=∠O=α
∵CE=CF,BE=BF
∴CB⊥EF(____________________________)(填写推理依据)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠BAC=30°,AB=AC,将线段AC绕点A逆时针旋转α°(0<α<180),得到线段AD,连接BD,交AC于点P.
(1)当α=90时,
①依题意补全图形;
②求证:PD=2PB;
(2)写出一个α的值,使得PD=PB成立,并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在一张矩形纸片ABCD中,AB=4,BC=8,点E,F分别在AD,BC上,将纸片ABCD沿直线EF折叠,点C落在AD上的一点H处,点D落在点G处,有以下四个结论:①HE=HF;②EC平分∠DCH;③线段BF的取值范围为3≤BF≤4;④当点H与点A重合时,EF=2.以上结论中,你认为正确的有( )个.
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,为直径,作的内接正六边形,甲、乙两人的作法分别如下:
甲:1.作的中垂线,交圆于两点;2.作的中垂线,交圆于两点;3.顺次连接六个点,六边形即为所求;
乙:1.以为圆心,长为半径作弧,交圆于两点;2.以为圆心,长为半径作弧,交圆于两点;3.顺次连接六个点,六边形即为所求;
对于甲、乙两人的作法,可判断( )
A.甲对,乙不对B.甲不对,乙对
C.两人都不对D.两人都对
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图放置的两个正方形,大正方形边长为,小正方形边长为(),在边上,且,连接,,交于点,将绕点旋转至,将绕点旋转至,给出以下五个结论:①;②;③;④;⑤四点共圆,其中正确的序号为___________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题:如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,试判断BE、EF、FD之间的数量关系.
【发现证明】小聪把△ABE绕点A逆时针旋转90°至△ADG,从而发现EF=BE+FD,请你利用图(1)证明上述结论.
【类比引申】如图(2),四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF与∠BAD满足 关系时,仍有EF=BE+FD;请证明你的结论.
【探究应用】如图(3),在某公园的同一水平面上,四条通道围成四边形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分别有景点E、F,且AE⊥AD,DF=40(﹣1)米,现要在E、F之间修一条笔直道路,求这条道路EF的长.(结果取整数,参考数据: =1.41, =1.73)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com