【题目】如图,PA、PB是⊙O的切线,切点分别是A、B,直线EF也是⊙O的切线,切点为Q,交PA、PB于点E、F,已知PA=12cm,∠P=40°
(1)求△PEF的周长.
(2)求∠EOF的度数.
【答案】(1)24cm;(2)70°.
【解析】
①根据切线长定理得出PA=PB,EB=EQ,FQ=FA,由PE+EF+PF=PE+EQ+FQ+PF即可求出答案.
②连接OE,OF,求出∠OEF+∠OFE的度数,即可得出∠EOF的度数.
(1)解:∵PA、PB是⊙O的切线,
∴PA=PB,
又∵直线EF是⊙O的切线,
∴EB=EQ,FQ=FA,
∴△PEF的周长=PE+PF+EF=PE+PF+EB+FA=PA+PB=2PA=24cm
(2)解:
连接OE,OF,则OE平分∠BEF,OF平分∠AFE,
则∠OEF+∠OFE=(∠P+∠PFE)+∠(P+∠PEF)=(180°+40°)=110°,
∴∠EOF=180°﹣110°=70°.
科目:初中数学 来源: 题型:
【题目】如图,为测量某建筑物AB的高度,在离该建筑物底部20m的点C处,目测建筑物顶端A处,视线与水平线夹角∠ADE为38.5°,目高CD为1.6m.求建筑物AB的高度.(结果精确到1m)(参考数据:sin38.5°=0.623,cos38.5°=0.783,tan38.5°=0.795)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xoy中,A(1,2),B(3,1),C(﹣2,﹣1).
(1)在图中作出△ABC关于y轴的对称图形△A1B1C1.
(2)写出点A1,B1,C1的坐标(直接写答案).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个无人超市仓库的货物搬运工作全部由机器人和机器人完成,工作记录显示机器人比机器人每小时多搬运50件货物.机器人搬运2000件货物与机器人搬运1600件货物所用的时间相等,则机器人每小时搬运货物( )
A.250件B.200件C.150件D.100件
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商店计划购进甲、乙两种商品,乙种商品的进价是甲种商品进价的九折,用3600元购买乙种商品要比购买甲种商品多买10件.
(1)求甲、乙两种商品的进价各是多少元?
(2)该商店计划购进甲、乙两种商品共80件,且乙种商品的数量不低于甲种商品数量的3倍.甲种商品的售价定为每件80元,乙种商品的售价定为每件70元,若甲、乙两种商品都能卖完,求该商店能获得的最大利润.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读理解,解决问题:
网约车、滴滴打车、共享汽车等新的出行方式越来越受大众欢迎.如图1,是某种网约车的计价规则,车辆行驶,平均速度为,则打车费用为 元(不足元按 元计价).某日,小明出行时叫了一辆网约车,按上述计价规则,打车费用(元)与行驶里程的函数关系如图 2 所示.
(1)当时,求与的函数表达式;
(2)若,求该车行驶的平均速度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线,不考虑空气阻力,足球距离地面的高度(单位:)与足球被踢出后经过的时间(单位:)之间的关系如下表:
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | … | |
0 | 8 | 14 | 18 | 20 | 20 | 18 | 14 | … |
下列结论:①足球距离地面的最大高度为;②足球飞行路线的对称轴是直线;③足球被踢出时落地;④足球被踢出时,距离地面的高度是.
其中正确结论的个数是( )
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,△ABC是等边三角形,点D是AC边上动点,∠CBD=α,把△ABD沿BD对折,A对应点为A'.
(1)①当α=15°时,∠CBA'= ;
②用α表示∠CBA'为 .
(2)如图2,点P在BD延长线上,且∠1=∠2=α.
①当0°<α<60°时,试探究AP,BP,CP之间是否存在一定数量关系,猜想并说明理由.
②BP=8,CP=n,则CA'= .(用含n的式子表示)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com