精英家教网 > 初中数学 > 题目详情
已知关于x的方程kx2-2x+3=0有两个不相等的实数根x1、x2,则当k为何值时,方程两根之比为1:3?
考点:根与系数的关系
专题:
分析:利用一元二次方程根与系数的关系可得:x1+x2=
2
k
x1x2=
3
k
,不妨设x1:x2=1:3,则可得x2=3x1,分别代入两个式子,即可求出k的值,再利用一元二次方程根的判别式进行取舍即可.
解答:解:由根与系数的关系可得:x1+x2=
2
k
x1x2=
3
k

不妨设x1:x2=1:3,则可得x2=3x1
分别代入上面两个式子,消去x1和x2,整理得:4k2-k=0,解得k=0或k=
1
4

当k=0时,显然不合题意,
当k=
1
4
时,其判别式△=1≥0,
所以当k=
1
4
时,方程两根之比为1:3.
点评:本题主要考查一元二次方程根与系数的关系,解题的关键是利用一元二次方程根与系数的关系得到关于k的方程,注意检验是否满足判别式大于0.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

箱子里面有一箱水果,梨的个数是橘子的
4
5
,苹果的个数是橘子的
2
3
,梨个数的
3
4
比苹果少两个,请问水果的总数是多少?(用方程)

查看答案和解析>>

科目:初中数学 来源: 题型:

方程组
y-x=m
x+2y=5m
中x与y的值的和等于3,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知-3x4+my与x4y3n是同类项,求代数式m100+(-3n)99-mn的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

判断关于x方程x2-mx(2x-m+1)=x是不是一元二次方程,如果是,指出二次项系数及常数项.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在正方形ABCD中,AB=4cm,且S△BEC=4S△DEF,求DF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的两个方程x2-x+3m=0,x2+x+m=0,若前一个方程中有一个根是后一个方程中某个根的3倍,求实数m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的一元二次方程ax2+bx+c=0(a≠0)的两根之比为1:2,求证:2b2=9ac.

查看答案和解析>>

科目:初中数学 来源: 题型:

在△ABC中,∠B=2∠C,AD为∠A的角平分线,mAB=nBD(n>m>0),则cosC=
 

查看答案和解析>>

同步练习册答案