分析 根据直线方程求得A、B的坐标.需要分类讨论:△PAB≌△OAB、△PBA≌△OAB.
解答
解:∵y=$\frac{1}{2}$x-1,
∴当x=0时,y=-1.当y=0时,x=2,
∴A(2,0),B(0,-1).
设P(a,b).
①当△PAB≌△OAB时,PA=OA=2,PB=OB=1,
则$\left\{\begin{array}{l}{(x-2)^{2}+{y}^{2}=4}\\{{x}^{2}+(y+1)^{2}=1}\end{array}\right.$,
解得 $\left\{\begin{array}{l}{{x}_{1}=0}\\{{y}_{1}=0}\end{array}\right.$(舍去),$\left\{\begin{array}{l}{x=\frac{4}{5}}\\{y=-\frac{8}{5}}\end{array}\right.$,
即P($\frac{4}{5}$,-$\frac{8}{5}$).
②当△PBA≌△OAB时,PB=OA,PA=OB,则四边形OAPB是矩形,易求P(2,-1);
综上所述,点P的坐标为($\frac{4}{5}$,-$\frac{8}{5}$)或(2,-1).
故答案是:($\frac{4}{5}$,-$\frac{8}{5}$)或(2,-1).
点评 本题考查了全等三角形的判定和一次函数图象上点的坐标特征.推知以点P,A,B为顶点的三角形与△OAB全等时,要分类讨论,以防漏解.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{x=\frac{5}{3}}\\{y=-\frac{7}{6}}\end{array}\right.$ | C. | $\left\{\begin{array}{l}{x=0}\\{y=-2}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{x=-1}\\{y=\frac{3}{2}}\end{array}\right.$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 1 | B. | $\sqrt{3}$ | C. | $\frac{{\sqrt{3}}}{3}$ | D. | $\frac{{2\sqrt{3}}}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com