【题目】如图,已知:在△ABC中,AB=AC,BD是AC边上的中线,AB=13,BC=10,
(1)求△ABC的面积;
(2)求tan∠DBC的值.
【答案】(1)60;(2).
【解析】
(1)作等腰三角形底边上的高AH并根据勾股定理求出,再根据三角形面积公式即可求解;
(2)方法一:作等腰三角形底边上的高AH并根据勾股定理求出,与BD交点为E,则E是三角形的重心,再根据三角形重心的性质求出EH,∠DBC的正切值即可求出.
方法二:过点A、D分别作AH⊥BC、DF⊥BC,垂足分别为点H、F,先根据勾股定理求出AH的长,再根据三角形中位线定理求出DF的长,BF的长就等于BC的,∠DBC的正切值即可求出.
解:(1)过点A作AH⊥BC,垂足为点H,交BD于点E.
∵AB=AC=13,AH⊥BC,BC=10
∴BH=5
在Rt△ABH中,AH==12,
∴△ABC的面积=;
(2)方法一:过点A作AH⊥BC,垂足为点H,交BD于点E.
∵AB=AC=13,AH⊥BC,BC=10
∴BH=5
在Rt△ABH中,AH==12
∵BD是AC边上的中线
所以点E是△ABC的重心
∴EH==4,
∴在Rt△EBH中,tan∠DBC==.
方法二:过点A、D分别作AH⊥BC、DF⊥BC,垂足分别为点H、F.
∵AB=AC=13,AH⊥BC,BC=10
∴BH=CH=5
在Rt△ABH中,AH==12
∵AH⊥BC、DF⊥BC
∴AH∥DF,D为AC中点,
∴DF=AH=6,
∴BF=
∴在Rt△DBF中,tan∠DBC==.
科目:初中数学 来源: 题型:
【题目】某校九年级有600名学生,在体育中考前进行了一次模拟体测.从中随机抽取部分学生,根据其测试成绩制作了下面两个统计图.请根据相关信息,解答下列问题:
(Ⅰ)本次抽取到的学生人数为 ,图2中的值为 ;
(Ⅱ)求本次调查获取的样本数据的平均数、众数和中位数;
(Ⅲ)根据样本数据,估计该校九年级模拟体测中得12分的学生约有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校教学楼后面紧邻着一个山坡,坡上面是一块平地,如图所示,BC∥AD,BE⊥AD,斜坡AB长为26米,斜坡AB的坡比为i=12:5,为了减缓坡面防山体滑坡,保障安全,学校决定对该斜坡进行改造,经地质人员勘测,当坡角不超过50°时,可确保山体不滑坡.
(1)求改造前坡顶到地面的距离BE的长;
(2)如果改造时保持坡脚A不动,坡顶B沿BC向左移11米到F点处,问这样改造能确保安全吗?(tan48.8°≈1.14)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(发现问题)
(1)如图1,已知△CAB和△CDE均为等边三角形,D在AC上,E在CB上,易得线段AD和BE的数量关系是 .
(2)将图1中的△CDE绕点C旋转到图2的位置,直线AD和直线BE交于点F.
①判断线段AD和BE的数量关系,并证明你的结论;
②图2中∠AFB的度数是 .
(探究拓展)
(3)如图3,若△CAB和△CDE均为等腰直角三角形,∠ABC=∠DEC=90°,AB=BC,DE=EC,直线AD和直线BE交于点F,分别写出∠AFB的度数,线段AD、BE间的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点E是矩形ABCD边AB上一动点(不与点B重合),过点E作EF⊥DE交BC于点F,连接DF,已知AB=4cm,AD=2cm,设A,E两点间的距离为xcm,△DEF面积为ycm2.
小明根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.
下面是小明的探究过程,请补充完整:
(1)确定自变量x的取值范围是 ;
(2)通过取点、画图、测量、分析,得到了x与y的几组值,如表:
x/cm | 0 | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | … |
y/cm2 | 4.0 | 3.7 | 3.9 | 3.8 | 3.3 | 2.0 | … |
(说明:补全表格时相关数值保留一位小数)
(3)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;
(4)结合画出的函数图象,解决问题:当△DEF面积最大时,AE的长度为 cm.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,抛物线与轴交于,两点(点位于点的左侧),与轴交于点.已知的面积是.
(1)求的值;
(2)在内是否存在一点,使得点到点、点和点的距离相等,若存在,请求出点的坐标;若不存在,请说明理由;
(3)如图②,是抛物线上一点,为射线上一点,且、两点均在第三象限内,、是位于直线同侧的不同两点,若点到轴的距离为,的面积为,且,求点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线y=﹣x+3与抛物线交于A、B两点,点A在x轴上,点B的横坐标为.动点P在抛物线上运动(不与点A、B重合),过点P作y轴的平行线,交直线AB于点Q.当PQ不与y轴重合时,以PQ为边作正方形PQMN,使MN与y轴在PQ的同侧,连结PM.设点P的横坐标为m.
(1)求b、c的值.
(2)当点N落在直线AB上时,直接写出m的取值范围.
(3)当点P在A、B两点之间的抛物线上运动时,设正方形PQMN的周长为C,求C与m之间的函数关系式,并写出C随m增大而增大时m的取值范围.
(4)当△PQM与坐标轴有2个公共点时,直接写出m的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一中和二中举行数学知识竞赛,参赛学生的竞赛得分统计结果如下表:
学校 | 参赛人数 | 平均数 | 中位数 | 方差 |
一中 | 45 | 83 | 86 | 82 |
二中 | 45 | 83 | 84 | 135 |
某同学分析上表后得到如下结论:.
①一中和二中学生的平均成绩相同;
②一中优秀的人数多于二中优秀的人数(竞赛得分85分为优秀);
③二中成绩的波动比一中小.
上述结论中正确的是___________. (填写所有正确结论的序号)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com