分析 (1)对于$\left\{\begin{array}{l}{x-y=8①}\\{2z+y=-1②}\\{3x-2z=5③}\end{array}\right.$,先由①+②得x+2z=7,再与③组成方程组$\left\{\begin{array}{l}{x+2z=7}\\{3x-2z=5}\end{array}\right.$,解此二元一次方程组求出x和z,然后利用代入法求出y,从而得到原方程组的解;
(2)先利用加减消元法消去z得到方程组$\left\{\begin{array}{l}{3x-y=1}\\{2x+y=4}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$,然后利用代入法求出z,从而得到原方程组的解.
解答 解:(1)$\left\{\begin{array}{l}{x-y=8①}\\{2z+y=-1②}\\{3x-2z=5③}\end{array}\right.$,
由①+②得x+2z=7,
解方程组$\left\{\begin{array}{l}{x+2z=7}\\{3x-2z=5}\end{array}\right.$得$\left\{\begin{array}{l}{x=3}\\{z=2}\end{array}\right.$,
把x=3代入①得3-y=8,解得y=-5,
所以方程组的解为$\left\{\begin{array}{l}{x=3}\\{y=-5}\\{z=2}\end{array}\right.$;
(2)$\left\{\begin{array}{l}{x+y-z=0①}\\{x-3y+2z=1②}\\{3x+2y-z=4③}\end{array}\right.$,
①×2+②得3x-y=1④,
③-①得2x+y=4⑤,
由④⑤组成方程组$\left\{\begin{array}{l}{3x-y=1}\\{2x+y=4}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$,
把x=1,y=2代入①得1+2-z=0,解得z=3,
所以原方程组的解为$\left\{\begin{array}{l}{x=1}\\{y=2}\\{z=3}\end{array}\right.$.
点评 本题考查了解三元一次方程组:利用代入法或加减法,把解三元一次方程组的问题转化为解二元一次方程组得问题.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\left\{\begin{array}{l}xy=1\\ x-y=2\end{array}$ | B. | $\left\{\begin{array}{l}5x-2y=3\\ \frac{1}{x}-y=3\end{array}$ | C. | $\left\{\begin{array}{l}2x-z=0\\ 3x-y=\frac{1}{5}\end{array}$ | D. | $\left\{\begin{array}{l}x=5\\ \frac{x}{2}-\frac{y}{3}=7\end{array}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com