【题目】如图,抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,4),与x轴交于点A和点B,其中点A的坐标为(﹣2,0),抛物线的对称轴是直线x=1.
(1)求抛物线的解析式.
(2)若点F是直线BC上方的抛物线上的一个动点,是否存在点F使四边形ABFC的面积为15,若存在,求出点F的坐标;若不存在,请说明理由.
【答案】(1)y=﹣x2+x+4;(2)存在点F使四边形ABFC的面积为15,此时,点F的坐标为(1,)或(3,)
【解析】
(1)利用待定系数法求出二次函数解析式;
(2)连接BF、CF、OF,作FG⊥x轴于点G,设点F的坐标为(t,﹣t2+t+4),用t分别表示出S△OBF、S△OCF、S△AOC,根据题意列式计算即可.
(1)由题意得,,
解得,,
则抛物线的解析式为:y=﹣x2+x+4;
(2)连接BF、CF、OF,作FG⊥x轴于点G,
设点F的坐标为(t,﹣t2+t+4),
∵A(﹣2,0),抛物线的对称轴是直线 x=1,
∴B(4,0).
∴S△OBF=×4×(﹣t2+t+4)=﹣t2+2t+8,
S△OCF=×4×t=2t,S△AOC=×2×4=4,
∵S四边形ABFC=S△AOC+S△OBF+S△OCF=﹣t2+2t+8,
由题意得,﹣t2+2t+8=15,
解得,t1=1,t2=3,
∴存在点F使四边形ABFC的面积为15,此时,点F的坐标为(1,)或(3,).
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AD⊥CD,BC⊥CD,E为CD的中点,连接AE,BE,BE⊥AE,延长AE交BC的延长线于点F。
证明:(1)FC=AD;
(2)AB=BC+AD。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一名大学毕业生利用“互联网+”自主创业,销售一种产品,这种产品的成本价为80元/件,经市场调查发现,该产品的日销售量(单位:件)与销售单价(单位:元/件)之间满足一次函数关系,如图所示.
(1)求与之间的函数解析式,并写出自变量的取值范围;
(2)求每天的销售利润(单位:元)与销售单价之间的函数关系式,并求出每件销售单价为多少元时,每天的销售利润最大?最大利润是多少?
(3)这名大学生计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知反比例函数 y=的图像经过点A(-1,a),过点A作AB⊥x轴,垂足为点B,△AOB的面积为.
(1)求a、k的值;
(2)若一次函数y=mx+n图像经过点A和反比例函数图像上另一点,且与x轴交于M点,求AM的值:
(3)在(2)的条件下,如果以线段AM为一边作等边△AMN,顶点N在一次数函数y=bx上,则b= ______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?”
译文:“假设有甲乙二人,不知其钱包里有多少钱.若乙把自己一半的钱给甲,则甲的钱数为50;而甲把自己的钱给乙,则乙的钱数也能为50.问甲、乙各有多少钱?”
设甲持钱为x,乙持钱为y,可列方程组为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某水果店计划进A,B两种水果共140千克,这两种水果的进价和售价如表所示
进价元千克 | 售价元千克 | |
A种水果 | 5 | 8 |
B种水果 | 9 | 13 |
若该水果店购进这两种水果共花费1020元,求该水果店分别购进A,B两种水果各多少千克?
在的基础上,为了迎接春节的来临,水果店老板决定把A种水果全部八折出售,B种水果全部降价出售,那么售完后共获利多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①abc>0;②2a+b=0;③若m为任意实数,则a+b>am2+bm;④a﹣b+c>0;⑤若ax12+bx1=ax22+bx2,且x1≠x2,则x1+x2=2.其中,正确结论的个数为( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,函数y1=x﹣2的图象与函数y2=的图象在第一象限有一个交点A,且点A的横坐标是6.
(1)求m的值;
(2)补全表格并以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点,补充画出y2的函数图象;
x | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 1.2 | 1.5 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
y2 | ﹣1 | 1 | 5 | 7 | 5.2 | 3.5 | 2 | 1 | 1 | 2 |
(3)写出函数y2的一条性质: ;
(4)已知函数y1与y2的图象在第一象限有且只有一个交点A,若函数y3=x+n与y2的函数图象有三个交点,求n的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在Rt△ABC中,∠ACB=90°,D是AB边上的一点,以BD为直径作⊙O.与AC相切于点E,连结DE并延长与BC的延长线交于点F.
(1)求证:EF2=BDCF;
(2)若CF=1,BD=5.求sinA的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com