【题目】在平面直角坐标系xOy中,函数y1=x﹣2的图象与函数y2=的图象在第一象限有一个交点A,且点A的横坐标是6.
(1)求m的值;
(2)补全表格并以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点,补充画出y2的函数图象;
x | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 1.2 | 1.5 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
y2 | ﹣1 | 1 | 5 | 7 | 5.2 | 3.5 | 2 | 1 | 1 | 2 |
(3)写出函数y2的一条性质: ;
(4)已知函数y1与y2的图象在第一象限有且只有一个交点A,若函数y3=x+n与y2的函数图象有三个交点,求n的取值范围.
【答案】(1)m=12;(2)3,;图见解析;(3)当x≤1时,y2随着x的增大而增大(答案不唯一);(4)﹣2<n<
【解析】
(1)将点A的横坐标代入y1=x﹣2可得出点A的坐标,再将A(6,2)代入y2=x+﹣6,可得m的值;
(2)根据函数解析式进行计算,即可得到函数值,在直角坐标系内描出相应的点,即可画出y2的函数图象;
(3)依据函数图象的增减性,即可写出函数y2的一条性质;
(4)当n=﹣2时,函数y3=x+n与y2的函数图象有两个交点,当函数y3=x+n的图象经过(1,7)时,函数y3=x+n与y2的函数图象有两个交点,据此可得n的取值范围.
解:(1)在y1=x﹣2中,令x=6,则y=2,即A(6,2),
代入y=x+﹣6,可得
2=6+﹣6,
解得m=12;
(2)∵y2=,
∴当x=﹣1时,y2=3;
当x=5时,y2=;
故表格中应填:3;;
y2的图象如图所示:
(3)由图可得,函数y2的一条性质:当x≤1时,y2随着x的增大而增大;
故答案为:当x≤1时,y2随着x的增大而增大(答案不唯一);
(4)函数y1与y2的图象在第一象限有且只有一个交点A,
当n=﹣2时,函数y3=x+n与函数y1=x﹣2的图象重合,
此时函数y3=x+n与y2的函数图象有两个交点,
当函数y3=x+n的图象经过(1,7)时,函数y3=x+n与y2的函数图象有两个交点,
此时,把(1,7)代入y3=x+n,可得n=;
∵函数y3=x+n与y2的函数图象有三个交点,
∴n的取值范围为﹣2<n<.
科目:初中数学 来源: 题型:
【题目】行驶中的汽车,在刹车后由于惯性的原因,还要继续向前滑行一段距离才能停住,这段距离称为“刹车距离”.为了测定某种型号汽车的刹车性能,对这种汽车的刹车距离进行测试,测得的数据如下表:
刹车时车速(千米/时) | 0 | 5 | 10 | 15 | 20 | 25 | 30 |
刹车距离(米) | 0 | 0.1 | 0.3 | 0.6 | 1 | 1.6 | 2.1 |
(1)在如图所示的直角坐标系中,以刹车时车速为横坐标,以刹车距离为纵坐标,描出这些数据所表示的点,并用平滑的曲线连结这些点,得到某函数的大致图象;
(2)测量必然存在误差,通过观察图象估计函数的类型,求出一个大致满足这些数据的函数表达式;
(3)一辆该型号汽车在高速公路上发生交通事故,现场测得刹车距离约为40米,已知这条高速公路限速100千米/时,请根据你确定的函数表达式,通过计算判断在事故发生时,汽车是否超速行驶.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,4),与x轴交于点A和点B,其中点A的坐标为(﹣2,0),抛物线的对称轴是直线x=1.
(1)求抛物线的解析式.
(2)若点F是直线BC上方的抛物线上的一个动点,是否存在点F使四边形ABFC的面积为15,若存在,求出点F的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB是的直径,点P在BA的延长线上,PD切于点D,过点B作,交PD的延长线于点C,连接AD并延长,交BE于点E.
(Ⅰ)求证:AB=BE;
(Ⅱ)连结OC,如果PD=2,∠ABC=60°,求OC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形纸片ABCD,AB=4,BC=3,点P在BC边上,将△CDP沿DP折叠,点C落在点E处,PE、DE分别交AB于点O、F,且OP=OF,则BF的长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知,点在边上,.过点作于点,以为一边在内作等边,点是围成的区域(包括各边)内的一点,过点作交于点,作交于点.设,,则最大值是_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某渔船在海面上朝正西方向以30海里/小时的速度匀速航行,在A处观测到灯塔C在北偏西60°方向上,航行1小时到达B处,此时观测到灯塔C在北偏西30°方向上。若该船继续向西航行至离灯塔最近的位置,求此时渔船到灯塔的距离.(结果保留根号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一种拉杆式旅行箱的示意图如图所示,箱体长,拉杆最大伸长距离,(点在同一条直线上),在箱体的底端装有一圆形滚轮与水平地面切于点某一时刻,点距离水平面,点距离水平面.
(1)求圆形滚轮的半径的长;
(2)当人的手自然下垂拉旅行箱时,人感觉较为舒服,已知某人的手自然下垂在点处且拉杆达到最大延伸距离时,点距离水平地面,求此时拉杆箱与水平面所成角的大小(精确到,参考数据:).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com