| A. | 4$\sqrt{5}$cm | B. | 3$\sqrt{5}$cm | C. | 2$\sqrt{5}$cm | D. | $\sqrt{5}$cm |
分析 连接OA,先根据垂径定理求出AM的长,再由勾股定理求出OM的长,进而可得出CM的长,根据勾股定理即可得出AC的长.
解答
解:连接OA,
∵⊙O的直径CD=10cm,AB是⊙O的弦,AB=8cm,且AB⊥CD,
∴OD=OC=OA=5cm,AM=$\frac{1}{2}$AB=4cm,
∴OM=$\sqrt{{OA}^{2}-{AM}^{2}}$=$\sqrt{{5}^{2}-{4}^{2}}$=3cm,
∴MC=OA-OM=5-3=2cm,
∴AC=$\sqrt{{AM}^{2}+{MC}^{2}}$=$\sqrt{{4}^{2}+{2}^{2}}$=2$\sqrt{5}$cm.
故选C.
点评 本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 4-y=4-x | B. | x2=y2 | C. | $\frac{x}{a}=\frac{y}{a}$ | D. | -2ax=-2ay |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 2$\sqrt{3}$+3$\sqrt{2}$=5$\sqrt{5}$ | B. | $\sqrt{8}$=4$\sqrt{2}$ | C. | $\sqrt{27}$÷$\sqrt{3}$=3 | D. | ($\sqrt{2}$)2=4 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | (-3-$\sqrt{3}$,3) | B. | (-3-$\sqrt{3}$,3$\sqrt{3}$) | C. | (-$\sqrt{3}$,3) | D. | (-$\sqrt{3}$,3$\sqrt{3}$) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com