【题目】已知:如图所示的一张矩形纸片ABCD(AD>AB),将纸片折叠一次,使点A与C重合,再展开,折痕EF交AD边于E,交BC边于F,分别连结AF和CE.
(1)求证:四边形AFCE是菱形;
(2)若AE=13cm,△ABF的周长为30cm,求△ABF的面积;
(3)在线段AC上是否存在一点P,使得2AE2=ACAP?若存在,请说明点P的位置,并予以证明;若不存在,请说明理由.
【答案】(1)见解析;(2)△ABF的面积=30cm2;(3)存在,过E作EP⊥AD交AC于P,则P就是所求的点.理由见解析.
【解析】
(1)连结EF交AC于点O,由折叠的性质得出EF垂直平分AC,OA=OC,由矩形的性质得出∠B=90°,AD∥BC,得出∠EAO=∠FCO,由ASA证明△AOE≌△COF,得出OE=OF,证出四边形AFCE是平行四边形,即可得出结论;
(2)由菱形的性质得出AF=AE=13cm,设AB=xcm,BF=ycm,由勾股定理得出x2+y2=169①,由三角形的周长得出x+y=17cm,因此(x+y)2=289②,由①、②得出xy=60,△ABF的面积= AB×BF=xy即可得出结果;
(3)过E作EP⊥AD交AC于P,则P就是所求的点.则∠AEP=90°,证出△AOE∽△AEP,得出对应边成比例,再由,即可得出结论.
证明:如图1所示,连结EF交AC于点O,当顶点A与C重合时,折痕EF垂直平分AC,
∴OA=OC,
∵四边形ABCD是矩形,
∴∠B=90°,AD∥BC,
∴∠EAO=∠FCO,
在△AOE和△COF中,,
∴△AOE≌△COF(ASA),
∴OE=OF,
∴四边形AFCE是平行四边形,
又∵EF⊥AC,
∴四边形AFCE是菱形;
(2)解:∵四边形AFCE是菱形,
∴AF=AE=13cm,
设AB=xcm,BF=ycm,
∵∠B=90°,
∴x2+y2=169 ①,
又∵△ABF的周长为30cm,
∴x+y+AF=30cm,
∴x+y=17cm,
∴(x+y)2=289②,
由①、②得:xy=60,
∴△ABF的面积=AB×BF=xy=30(cm2).
(3)解:存在,如图2,过E作EP⊥AD交AC于P,则P就是所求的点.理由如下:
由作法得:∠AEP=90°,
由(1)得:∠AOE=90°,
又∵∠EAO=∠EAP,
∴△AOE∽△AEP,
∴,
∴AE2=AOAP,
∵,
∴,
∴2AE2=ACAP.
科目:初中数学 来源: 题型:
【题目】如图,在等边△ABC中,D为BC边上一点,E为AC边上一点,且 ∠ADE=60°,BD=4,CE=,则△ABC的面积 为( )
A. B. 15 C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在□ABCD中,E,F分别为边AB和CD的中点,连接DE,BF,且AB=2AD=4.
(1)求证:△AED≌△CFB;
(2)当四边形DEBF为菱形时,求出该菱形的面积;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,已知直线l:y=﹣x﹣1,双曲线y=,在l上取一点A1,过A1作x轴的垂线交双曲线于点B1,过B1作y轴的垂线交l于点A2,请继续操作并探究:过A2作x轴的垂线交双曲线于点B2,过B2作y轴的垂线交l于点A3,…,这样依次得到l上的点A1,A2,A3,…,An,…记点An的横坐标为an,若a1=2,则a2018=_____;若要将上述操作无限次地进行下去,则a1不可能取的值是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公司销售一种新型节能产品,现准备从国内和国外两种销售方案中选择一种进行销售.若只在国内销售,销售价格y(元/件)与月销量x(件)的函数关系式为y=x+150,成本为20元/件,无论销售多少,每月还需支出广告费62500元,设月利润为w内(元).若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a元/件(a为常数,10≤a≤40),当月销量为x(件)时,每月还需缴纳x2元的附加费,设月利润为w外(元).
(1)当x=1000时,y= 元/件,w内= 元;
(2)分别求出w内,w外与x间的函数关系式(不必写x的取值范围);
(3)当x为何值时,在国内销售的月利润最大?若在国外销售月利润的最大值与在国内销售月利润的最大值相同,求a的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,菱形ABCD的边AD⊥y轴,垂足为点E,顶点A在第二象限,顶点B在y轴的正半轴上,反比例函数y=(k≠0,x>0)的图象同时经过顶点C,D.若点C的横坐标为5,BE=3DE,则k的值为( )
A. B. 3 C. D. 5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对任意一个三位数n,如果n满足各数位上的字互不相同,且都不为零,那么称这个数为“相异数”.将一个“相异数”任意两个数位上的字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为.例如,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的好得到132,这三个新三位数的和为,,所以.
(1)计算:,;
(2)若s,t都是“相异数”,其中,(,,x,y都是正整数),规定:,当时,求k的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A为x轴上一点,点B的坐标为(a,b),以OA,AB为边构造OABC,过点O,C,B的抛物线与x轴交于点D,连结CD,交边AB于点E,若AE=BE,则点C的横坐标为( )
A.a﹣bB.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,已知∠C=90°,∠B=55°,点D在边BC上,BD=2CD.把△ABC绕着点D逆时针旋转m(0<m<180)度后,如果点B恰好落在初始Rt△ABC的边上,那么m为( )
A.70° B.70°或120°
C.120° D.80°
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com