【题目】根据卫生防疫部门要求,游泳池必须定期换水,清洗.某游泳池周五早上8:00打开排水孔开始排水,排水孔的排水速度保持不变,期间因清洗游泳池需要暂停排水,游泳池的水在11:30全部排完.游泳池内的水量Q(m2)和开始排水后的时间t(h)之间的函数图象如图所示,根据图象解答下列问题:
(1)暂停排水需要多少时间?排水孔排水速度是多少?
(2)当2≤t≤3.5时,求Q关于t的函数表达式.
【答案】
(1)解:暂停排水需要的时间为:2﹣1.5=0.5(小时).
∵排水数据为:3.5﹣0.5=3(小时),一共排水900m3,
∴排水孔排水速度是:900÷3=300m3/h;
(2)解:当2≤t≤3.5时,设Q关于t的函数表达式为Q=kt+b,易知图象过点(3.5,0).
∵t=1.5时,排水300×1.5=450,此时Q=900﹣450=450,
∴(2,450)在直线Q=kt+b上;
把(2,450),(3.5,0)代入Q=kt+b,
得 ,解得 ,
∴Q关于t的函数表达式为Q=﹣300t+1050.
【解析】本题考查了一次函数的应用,主要考查学生能否把实际问题转化成数学问题,题目比较典型,是一道比较好的题目.(1)暂停排水时,游泳池内的水量Q保持不变,图象为平行于横轴的一条线段,由此得出暂停排水需要的时间;由图象可知,该游泳池3个小时排水900(m3),根据速度公式求出排水速度即可;(2)当2≤t≤3.5时,设Q关于t的函数表达式为Q=kt+b,易知图象过点(3.5,0),再求出(2,450)在直线y=kt+b上,然后利用待定系数法求出表达式即可.
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为( )
A.3:4
B.9:16
C.4:9
D.1:3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知抛物线y=x2+bx+c过A,B,C三点,点A的坐标是(3,0),点C的坐标是(0,﹣3),动点P在抛物线上.
(1)b= , c= , 点B的坐标为;(直接填写结果)
(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;
(3)过动点P作PE垂直y轴于点E,交直线AC于点D,过点D作x轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知与是反比例函数图象上的两个点.
(1)求m和k的值
(2)若点C(-1,0),连结AC,BC,求△ABC的面积
(3)根据图象直接写出一次函数的值大于反比例函数的值的的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一次函数y=ax+b和反比例函数y= 在同一平面直角坐标系中的图象如图所示,则二次函数y=ax2+bx+c的图象大致为( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB上,当△CDE的周长最小时,点E的坐标为( )
A.(3,1)
B.(3, )
C.(3, )
D.(3,2)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】作图题:(要求保留作图痕迹,不写作法)
(1)作△ABC中BC边上的垂直平分线EF(交AC于点E,交BC于点F);
(2)连结BE,若AC=10,AB=6,求△ABE的周长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com